Index

Abstract

When  Penicillium  notatum  and  Aspergillus  niger  grown  on  Lucerne  DPJ  by  serving 1 %  and  2 %   of  the  substrates,  viz.,  casein,  starch  and  carboxymethyl  cellulose  (CMC),  it  showed  the  promising  results  of  mycelial  biomass  and  hydrolytic enzyme  activities.  Present  attempt  was  on  growth  of  species  Penicilium  notatum  and   Aspergillus  niger  on   beet  and  lucerne  foliage  DPJ  broth  medium  as  compared  with  control  glucose  nitrate  (GN)  medium.  Aspergillus  niger  not  showed  its  growth  on  DPJ  when  enriched   with  casein   and  starch   but  there  was  growth  on  DPJ  alone  when  substrates  were  not  added.  Therefore DPJ itself has the efficacy   in initiating fungal  growth.  Beet  DPJ  inhibited  the  growth   of  Penicillium  notatum   when  substrates  were  added,  and  only  1%  of  CMC   was  found  responsible  to  initiate  its  growth  by  addition  in  DPJ.  Penicillium  notatum  thrieved  well  on  lucerne  DPJ.  Increasing  concentration  of  casein  in  Lucerne  DPJ  enhanced  rate  of  enzyme  protease. Beet DPJ found having its antimicrobial influence.  The  objective  of  research was  optimization  of  enzyme  productivity  by  DPJ  for  industrial  use.

Keywords: Glucose nitrate, Casein, CMC, Starch, Protease, Aspergillus niger.

Received: 3 June 2019 / Revised: 8 July 2019 / Accepted: 13 August 2019/ Published: 18 September 2019

Contribution/ Originality

This  study  is  one  of  few  studies  performed  by  the  influence  of  deproteinised  leaf  extract  from lucerne  and  beet  leaves  by  adding  the  substrates  in  it  and  subjecting  it  for  the  estimation of  enzymes.  The  secondary  metabolites can  be  having  the  quality  of  specific  herbal  influence  along  with  the  fungal  effects  like  antibiotics  or  the  vitamins.


1. INTRODUCTION

Study  assesses  sutability  of  cabbage  as  substrate  of  solid  state  fermentation   for  production  of  cellulase  enzymes  by  Penicillium  notatum,  optimises  fermentation  condition  for  maximum  yield  of  enzymes,  and  presents  characterisation  of  enzymes  and  enzyme  kinetics.  Cellulase  concentration  was  estimated  for  carboxymethyl  cellulase  (CMC) [1].  In the past few decades, starch degrading enzymes like α-amylase by  fungi  like  Penicillium notatum  etc  have received a great deal of attention because of their perceived technological significance and economic benefit [2, 3]. The  synthesis of  a cellulolytic  enzyme  from   Penicillium  notatum  assay  is based  on  the  increase  in  reducing  groups  following  the  incubation  of  carboxymethylcellulose (CMC)  with  the  enzyme [4].

As  DPJ  from  beet  leaves is utilised  for the mycelial  growth  of  Penicillium,  it  is  found  that  endophytic   fungi   like  Alternaria   found  in  leaves  of  beet [5]. This fungi gets  sterilised in  autoclave  before  inoculation.  DPJ  from  lucerne  was  consumed  for the  growth  of  Penicillium  notatum,  it  was  searched  that   Lucerne  (Medicago  spp.)  is  an  important  forage  crop  grown   worldwide.  Lucerne  plants  contains  appreciable  amount  nutrients found  in  leaf  protein  research. In  Beet  leaves,  the presence of  saturated (SFA), monounsaturated  (MUFA), and polyunsaturated (PUFA) fatty acids was investigated. Among the  SFA,  pentadecilic  (15:0),  palmitic (16:0),  and  stearic (18:0) acids  were identified. The  MUFA  identified  were  pentadecenoic (15:1n-9),  palmitoleic (16:1n-7),  oleic  (18:1  n-9),  and  vaccenic  acids  (18:1n-7).  The  commonly  PUFA  present  in  the  lipid  fraction  of  leaves  are  linoleic  (LA, 18:2n-6)  and  alpha-linolenic (LNA, 18:3n-3)  acids,  which  belong  to  the  ω-6  and  ω-3  families, respectively [6]. The  chlorophyllase  of  sugar-beet  leaves  was  characterized  and  partly purified  by  gel-filtration  and  ion-exchange  chromatography  on  various  types  of Sephadex [7].

The  process  of  green  crop  fractionation (GCF)   and  its   byproducts  evaluation  was  rcommended Pirie [8]; Collins [9]. Ghewande [10]  cultivated  5  fungal  species  viz.,  Aspergillus  Fusarium,  Phoma,  Penicilium  and  Helminthosporium  on  the  DPJ  expressed  during  fractionation  of  hybrid  napier  grass.  They  also  reported  the  possibility of  utilizing  this  liquor  for  the  production  of  microbial  biomass. Mukadum, et al. [11]  observed  that  the  DPJ  from  some  plants  may  inhibit  germination of  pathogenic  fungal  spores.  It  is  now  well  established  that  byproduct  of  GCF,  the  DPJ  is  the  potential  broth  medium  for  growing  fungi  as  DPJ  contains  minerals,  amino  acids,  phytohormones,  vitamins   etc  and  also  enzymes  like  protease  etc. [12-14].  In  earlier  findings,  deproteinised  juice  (DPJ)   without  adding  any  substrates   has  the  potential  for  growing  economically   important   microbes.  Usually  fungi  grows  well  on  solid  mediums.  But  liquid  DPJ  made  from  some  plants   induces  mycelial  growth  as  per  the  earlier  findings  by  the  reporters.  Very  few   DPJ  like  Allium  cepa  and  beet  foliage  DPJ  found  inhibitory  for  growth  of  fungi  and  its  enzyme  protease[15].  It  was  already  experimented  that  many  industrial  hydrolytic  enzymes  like  proteases  got  secreted  when  Penicillium  chrysogenum, Aspergillus  flavus  and  A.  niger  fungi  grown  on  DPJ [16].  Raphanus  DPJ  was  found  to  induce  more  production  of  organic  acids  as  compared with  PDB  medium.  As  compared  with  cabbage  and  cauliflower DPJ,  Raphanus  DPJ was found more significant. It  was  also  found  that   the  yeast  fermentation  also  secretes  the  hydrolytic  enzymes  at  appreciable  amount  in  the  broth  of  DPJ   made  from  various  foliages. The diameter of  zones  of  enzymes  amylases  and  cellulases were  maximum  by Oat (Avena sativa  L.)  DPJ. Enzymes  proteases expressed  by  almost all deproteinised leaf extracts like  Cucurbita  maxima,  Momordica  charantia,  Moringa   etc. [17].  These  hydrolytic  enzymes  also  are  the  cell  wall  degrading  enzymes.  9  other  fungi  grew  well  on  DPJ  of  Lucerne  as   compared  with  glucose  nitrate  medium  and  produced  the  protease,  cellulase,  amylase  and  lipase  enzymes  more  as  compared  with  the  culture  filtrates  of  GN  medium  also  by  adding  the  substrates  of  casein,  carboxymethyl  cellulose  (CMC)   and  starch  at  1  and  2  %  level.  Penicillium  notatum  is  an  antibiotic  fungi  and  the  extracellular  proteinase  also  purified  from  it Yuri [18]; Makonnen and Porath [19]; Kamath, et al. [20]. Earlier  report  was  of  glucose oxidase   has  been  isolated  from  a  culture  filtrate  of Penicillium  notatum [21].

During  present  investigation,   attempts  were  made  to  use  the  lowest  concentrations  of  CMC,  casein  and  starch  at  0.75  and  1  %  for  the  strains  growth  of   Penicillium   notatum  and  Aspergillus  niger  by  addition  in   beet  and  lucerne  foliage  DPJ   and  its  enzyme  protease. In  earlier  studies,  the  substrates  CMC,  casein  and  starch  were  used  at  high  concentration.  The  present  objective  is  to  enhance  the   productivity  of  enzymes  and  subjected   comparative  characterization  of  various  substrates  with  the  DPJ.

2. MATERIALS AND METHODS

2.1. DPJ Broth Medium

During  the  process of  green  crop  fractionation  (GCF)  of  lucerne  (Medicago  sativa L.)  and  beet  (Beta  vulgaris  L.),  the  pulp  is  formed  by  fractionation  which  is  squeezed  to  express   the  juice  and  pressed  crop  residue  by  filtration  with  the  muslin  cloth [6].  Deproteinised  juice  obtained  by  heating  the  juice  at  95  °C  temperature  and  filtered  by  thick  muslin  cloth.  The  residue  obtained  by  heated  juice  filteration  is  called  as  Leaf  protein   concentrate  (LPC).  This  LPC  is  beneficial  for  human  or  poultry  as  the  protein  and  vitamin  source. 

2.2. Glucose Nitrate Medium and Substrates

Glucose  nitrate medium (GN)  was  prepared by  dissolving  10  g  glucose, 2.5 g,  KNO3, 1 g  KH2 PO4  and  0.5 MgSO4  in  1  lit  distilled water. The  DPJ  was  used  at  2%  level  as a  culture  medium  after  dissolving  20  g  dry  DPJ  in  1  lit  of  distilled  water.  In  order   to  study the mycelia growth and enzymes production enhancement, starch, casein or carboxy methyl cellulose (CMC) served as a substrate at concentration of  0.75  %  and 1 % to  either GN medium  or  %  DPJ  solution. Strain  inoculation  from  isolates  twenty five ml of either GN medium of DPJ solution, either alone or enriched with substrate, were placed in conical flasks. The flasks were plugged with non-absorbent cotton and autoclaved  at 15 lbs for 30 min. The flasks were cooled in UV chamber and inoculated with  either strains of  Aspergillus  niger or Penicillium  notatum. These were incubated till sporulation  5  -  8 days) and filtered through  whatman  filter paper to harvest microbial biomass. It was dried in oven at 65°C and mycelia dry weight (MCW) obtained were recorded. The culture filtrates released during filtration, were considered as crude enzyme preparations and activity of  protease  was measured using cup plate method.  Substrate  casein is  used  in  both  i.e.,  the  growth  broth  medium  as  well  as  in  the  agar  substrate  plate  for  enzyme  activity.  The enzyme production was  expressed as diameter of the zone formed due to its activity on specific medium.  The agar “cup plate” diffusion assay of Dingle, et al. [22] can be used to quantify   the  activity of  a variety of  enzymes. The gel was developed after incubation by  flooding   the  assay  plate. Samples  pipetted  into  diameters of  wells (mm)   punched in the agarose with  a  cork  borer. It  is incubated  at  33°C.

2.3. Enzyme Protease  

The  basal  medium  composed  of  2  %  agar, 4 %  gelatin, 1 %  peptone, 1 %  casein  and pH  was  adjusted  to  6.8.  In  this  assay,  casein  acts  as  a  substrate  [22].

Fungal  strains  of  Penicillium  notatum  and  Aspergillus  niger  were  cultivated  by  prior  inoculation  under  the  laminar  air  flow  hood  under  the  aseptic  conditions  on  glucose  nitrate  medium  and  another  broth  liquid  medium  called  deproteinised  leaf  juice  (DPJ).

3. RESULTS AND DISCUSSION

In  earlier  studies  the  fungi  were  grown  successfully  on  glucose  nitrate  medium  as  well  as  deproteinised  leaf  juice  broth.  Later  the  growth  of  fungi   was   attempted  on  the  lucerne  DPJ  and  GN medium  by  adding  the  substrates  of  carboxymethyl  cellulose,  casein  and  starch  at  1%  and  2  % .  There  was  enhancement  in  the  mycelia yield  as  was  activity  of  the  enzymes amylases,  proteases  and cellulases.
During  present  investigation,  in  order  to  enhance  mycelial  weight  and  to  prove  DPJ  as  conventional  nutrient  source  as  a  medium  for  fungal  growth,  studies  were  carried  out.  DPJ  alone  found  to  enhance  microbial  growth including  yeast  in  previous  studies.  In the  present  study,  CMC,  casein  and  starch were  added  to  confirm  more  enhancement in  the  mycelial  yield  on  GN  as  well  as  another  DPJ  medium   made  from  beet  leaves  at  lowest  0.75  %  and  1  %  level.

Table  1  indicates  Aspergillus  niger  thrieved  well  on  both  0.75  and  1  %  of  the  concentrations  of  CMC.  It was  added  in    glucose  nitrate medium.  Glucose  nitrate  medium  was  the  control.  Glucose nitrate  liquid  broth  containing  starch   and  casein  of   0.75  and  1  %  of concentrations  were  not  successful  in  initiation  of  mycelial  growth.   The  DPJ  of  beet  foliage  inhibited   the  mycelial  cell  proliferation  of  A.  niger  illustrated  in  Figure  1.  

Table-1. Mycelial  growth  of  Aspergillus  niger on Glucose nitrate medium by adding various substrates and  Beet  leaves DPJ by adding  casein substrate.

No.
Concentration of various substrates
Mycelial dry weight  (g)
1.
Glucose  nitrate  + 0.75 %  CMC
Glucose  nitrate  + 1% CMC
0.485
0.160
2.
Glucose  nitrate  +  0.75 %  starch
Glucose  nitrate +  1%  starch
-ve
-ve
3.
Glucose  nitrate  +  0.75  %  casein
Glucose   nitrate  +  1  %  casein
-ve
-ve
4.
Beet  foliage  DPJ  +  0.75  %  casein
-ve

Figure-1.  Mycelial dry weight (MDW) of Aspergillu s niger on beet foliage  DPJ after the  addition of  carboxymethyl  cellulose at various concentrations.

Figure- 2. Growth  of  Penicillium  on  GN  medium  and  DPJ  broth  medium  by  adding   1%  substrate  casein.

In  earlier  research  the  DPJ   made  from  Allium  cepa  also  found  inhibitory  in  growing  the  fungi  Trichoderma  and  alsoinhibited   the  enzyme  protease  studied  by  cup  plate  method.  While  on  the  other  hand   Trichoderma  grew  well  on  few  cruciferous   and   Amaranthus  sp  foliage  DPJ.

The  same experiment  was  conducted  to  observe  the  results  in  case  of  fungi  Penicillium  notatum  illustrated  in  Table  2Penicillium  notatum  was  grown on  both   DPJ  of  lucerne  and  beet  leaves.  In  order  to  enhance  its  mycelial  biomass  attempts were  made  to  add  the  substrates  viz.,  starch,  casein  and  CMC depicted  in  Figure 2.

Table-2.  Mycelial biomass of Penicillium notatum on various concentrations of substrates by adding it  in glucose nitrate medium, lucerne and  beet foliage DPJ.  

No.
Concentration of substrate (%)
Substrate
Mycelial dry weight (g)  on  broth medium
Glucose nitrate
Lucerne DPJ
Beet  DPJ
1.
0.75
Starch
-ve
0.260
-ve
2.
1.00
Starch
0.190
0.280
-ve
3.
0.75
Casein
0.095
0.210
-ve
4.
1.00
Casein
0.140
0.200
-ve
5.
0.75
CMC
-ve
0.485
-ve
6.
1.00
CMC
-ve
0.160
0.740

The   differences  in  the  mycelial  biomass   of  Penicillium  notatum  obtained  on  the  DPJ  from   beet  and  Lucerne  foliages  as  compared  with  glucose  nitrate  broth  medium  is  illustrated  in  Table  2.   Lucerne  DPJ  was  successful  in  inducing  mycelial   growth  in  presence  of  all  substrates  viz.,  starch,  CMC  and  casein    at  both   0.75  and  1  %  level.  It  enhanced  as  per  the  increased  concentration  of  starch.  Lucerne  DPJ  reduced  the  mycelial  growth  when  the  concentrations  of  casein  and  CMC  increased.  In  case  of  carboxymethyl  cellulose  as  the  substrate  for  mycelial  growth,  beet  foliage  DPJ  inhibited  the  fungal  growth  on  casein  and  starch  substrates    at   both  concentrations   while  on  the  other  hand,  it initiated  the  fungal  growth  at  only  1  %  CMC  concentration.  As  this  concentration  of  CMC  at  1%  was  found  appropriate  for  the    growth  of  Penicillium  notatum  fungi   on    beet  DPJ  showed  in  Figure  3

Figure-3. Illustration of mycelial weights on Glucose nitrate (control) and Lucerne and beet  foliage DPJ after the  addition of  various substrates in the broth medium.

The mycelial  biomass  of  Penicillium  on  Beet  DPJ  was  more  as  compared  with  Lucerne  DPJ  i.e.  0.740  g.  P.  notatum  grew  well  on  increasing  concentrations  of  starch  and  casein   in  glucose  nitrate  broth  medium   but  got  inhibited  on  carboxy  methyl  cellulose.  Therefore  it is  proved  that  lucerne  DPJ  had  the  potential  in  inducing  the  commercial   fungal  growth.  When  the  substrates  are  added  in  both  medium,  lucerne  DPJ  initiated  the  mycelial   growth.   Both  the  fungi  Aspergillus  niger  and  Penicillium  showed  reduced  mycelial  biomass  if  the  carboxymethyl  cellulose   percent   concentration  increased  from  0.75  to  1 %  level  illustrated  in  Table  1 and  2Penicillium  couldnt  grow  on  both  the  concentrations  of  CMC  if  added  in  control  GN  medium.

Figure-4.  Production  of  enzyme  protease  on  1%  casein added  in  DPJ before  growth  of  Penicillium  chrysogenum  antibiotic fungi.

0.75  %  starch  when  used  in  GN  medium,  there  was  no  fungal  growth.  When  0.75  %  of  starch  was  added in  beet  DPJ,  then  also  there  was  fungal  growth  of  Penicillium.  But  when  Lucerne  DPJ  was  used  by  adding  0.75 %  of  starch  there  was  growth.   Same  when   1  %  CMC  when  used  in  GN  medium,  there  was  no  fungal  growth.  When  1  %  of  CMC  was  added in  beet  DPJ,  then   there  was  fungal  growth  of  Penicillium.  But  when  Lucerne  DPJ  was  used  by  adding  1  %  of  CMC  there  was  growth. This  indicates  the  more  efficacy  of  Lucerne  in  inducing  the  mycelial  growth as  compared  with  beet  foliage  DPJ. The  significant  enhancement  of  the  enzyme  protease  zone  (mm)  by  the  antibiotic  Fungi  Penicillium  notatum   illustrated  in  Table  3  by  cup  plate  assay  method  and  depicted in Figure  4

Table-3. Secretion of the enzyme protease by Penicillium  notatum  on Lucerne DPJ broth after adding the substrate  casein.

No.
Broth  medium
Concentration of casein for fungal growth (%)
Enzyme protease  zone (mm)
1
DPJ
0.75
15
2
DPJ
1.00
20

The colouration of the zone was slightly brownish.  It  was  because  of  the  increase  in  the   concentration  of  the  substrate  casein  dose  at  1  %  level  in  the  DPJ  broth   of  lucerne  to  optimize  the  cultural  conditions. The  DPJ  broth  was  responsible  to induce  the  enzymic  zones  as  it  already  contains  the  quantity  of  protease   as  per  the  earlier  investigation.

Therefore it  reveals  that   DPJ  have  the  potential  in  initiating  the  fungal  growth  as  compared  with  GN  medium  in  presence  of  substrates.  Sometimes  substrates  becomes  responsible  to  inhibit  the  mycelial  growth,  as  it  was  already proved  the  successful  growth  of  Aspergilllus  niger  and  P.  notatum  growth  on  DPJ  without  adding  any  substrates. DPJ  do  not  need  any  substrate  for  mycelial   growth  as  it  already  contains  the  essential  elements.

In  earlier  research  DPJ   induced the  hydrolytic  enzymes  by  fungi  as  well  as  yeast.  DPJ  itself  contains  presence  of  phytohormones  responsible  to  activate  enzymes.  The  fermented  leaf  juice from  cauliflower  also found  activating the  hydrolytic  enzymes.  When  the  specific  substrates  responsible  to  induce  enzyme  activity  added in  DPJ  it  showed  striking  influence.  It  was  because  deproteinised  leaf  juice  still contains  presence  of  few  hydrophilic  soluble  amino  acids  after   protein  separation.  Starch  and  casein  at  0.75  and 1 %   level  in  addition  to  the  GN  medium  showed  antifungal influence  of  Aspergillus  niger  growth. The   DPJ  used prepared  from  beet  leaves  in  addition  with  casein  showed  antifungal  influence  of  both  Aspergillus  niger  and  Penicillium  fungi,  perhaps  may  be  because  of  presence  of  the  nanoparticles  in  it.  Earlier  investigation  showed   presence  of  nanoparticles  in  Colocasia,  cabbage  and  radish  foliage  DPJ.

4. CONCLUSION

Therefore  the  research  concludes  that  DPJ  alone  has  the  potential  in  having  the  mycelial  growth.  If  it  is  inhibiting  the  growth  of  fungi,  definitely  the  substrates  when  added,  can  induce  mycelial  growth   and  secrete  appreciable  amount  of  enzymes.  The  activity  of  enzymes  indicates  the  presence of  soluble  proteins  in  DPJ  or  enhancement  of  solubility  of  amino  acids  in  DPJ  by  fungi.  The  amino acids  were  hydrophilic.  Enzyme  activity  already  found  at  appreciable  amount  in  earlier  research  without  adding  any  substrates  when  various  fungi  were  grown  on  DPJ  broth  medium  for  industrial  purpose.  Inhibition  of  fungal  growth  might  be  because  of  few  fatty  acids  and  nanoparticles  content  of  beet  leaves  DPJ. Till  date  it  is  revealed  that  DPJ  from  Lucerne  has   the  potential,  as  it  initiated  the  mycelial  growth  and  hydrolytic protease  activity  and  balanced  nanoparticles  content. At high concentration specific DPJ can cause chromosomal abberations. 

Funding: This study received no specific financial support.   
Competing Interests: The author declares that there are no conflicts of interests regarding the publication of this paper. 
Acknowledgement: The author is thankful to the D. G. Ruparel College, Mahim,  affiliated  to  University  of  Mumbai    authorities  for  the  help  in  publishing  the  manuscript.  The  Author  express  deep  sense  of gratitude  to  Ex  Professor  and  Head,  Dr.  A. M.  Mungikar,  Department  of  Botany,  Dr  Babasaheb  Ambedkar  Marathwada  University,  Aurangabad, India,  for  his  valuable  suggestions.

REFERENCES

[1]          D. Arpan and G. Uma, "Solid state fermentation of waste cabbage by Penicillium notatum NCIM No. 923 for production and characterisation of cellulases," Journal of Scientific & Industrial Research, vol. 68, pp. 714-718, 2009.

[2]          R. Gupta, P. Gigras, H. Mohapatra, V. Goswami, and B. Chauhan, "Microbial α amylases: A biotechnological perspective," Process Biochemistry, vol. 38, pp. 1599-1616, 2003. Available at: https://doi.org/10.1016/s0032-9592(03)00053-0.

[3]          G. Priyanka, A. Das, S. Gayen, K. C. Mondal, and U. Ghosh, "Statistical optimalization of α-Amylase production from penicillium notatum NCIM 923 and kinetics study of the purified enzyme," Acta Biologica Szegediensis, vol. 59, pp. 179-188, 2015.

[4]          G. Pettersson and J. Porath, "A cellulolytic enzyme from penicillium notatum," In Methods in Enzymology, vol. 8, pp. 603-607, 1966. Available at: https://doi.org/10.1016/0076-6879(66)08109-6.

[5]          S. Larran, C. Mónaco, and H. Alippi, "Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves," Advance in Horticulture Science, vol. 14, pp. 193-196, 2000.

[6]          B. B. F. Polyana, J. S. Boeing, É. O. Barizão, N. E. d. Souza, M. Matsushita, C. C. d. Oliveira, M. Boroski, and J. V. Visentainer, "Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: A chemical composition study," Food Science and Technology, vol. 34, pp. 94-101, 2014. Available at: https://doi.org/10.1590/s0101-20612014005000007.

[7]          M. Bacon and H. Margaret, "Chlorophyllase of sugar-beet leaves," Journal of Phytochemistry, vol. 9, pp. 115–125, 1970. Available at: https://doi.org/10.1016/s0031-9422(00)86622-4.

[8]          N. Pirie, Leaf protein and other aspects of fodder fractionation. London: Cambridge University  Press, 1978.

[9]          M. Collins, "In recent advances in leaf protein research," in Proceedings of the 2nd international Conference on Leaf Protein Research, I. Tasaki (Ed.), Nagoya and Kyoto, Japan, 1985, pp. 149-151.

[10]        H. Ghewande, "Degradation of cellulose production of cellulolytic enzymes by plant pathogenic fungi," Journal of Biological Sciences, vol. 20, pp. 69-73, 1977.

[11]        D. S. Mukadum, L. D. Balkhande, and G. V. Umalkar, "Antifungal activities in deproteinized leaf extract of weeds and nonweeds," Indian Journal of Microbiology, vol. 16, pp. 78-79, 1976.

[12]        J. K. Rajesh, "Distribution of the dry matter and nitrogen (N) ingreen crop fractionation products," BIOINFOLET-A Quarterly Journal of Life Sciences, vol. 11, pp. 722-725, 2014.

[13]        J. Rajesh and M. Mulla, "Screening Of Organic Acids Production By Fungi Grown On Extracts From Various Leaves After Protein Isolation In Vitro : The Novel Industrial Approach," International Journal of Pharmaceutical and Phytopharmacologic, vol. 13, pp. 266–278, 2018.

[14]        J. Rajesh, "Evaluation and detection of brassicaceae leafy whey phytohormones efficacy for exploiting as a broth medium obtaining optimistic culture of fungi in vitro: A mycological review," Journal of Innovations Agriculture, vol. 2, pp. 1– 5, 2019. Available at: https://doi.org/10.25081/ia.2019.v2.20190115.

[15]        R. Jadhav and N. Mestry, "Protease inhibition by Allium cepa. L. forage deproteinised juice (DPJ) in trichoderma viride," Journal of Mycology and Plant Pathology, vol. 48, pp. 357-366, 2018.

[16]        R. Jadhav, "In vitro screening of cell wall degrading enzyme productivity from fungal culture filtrates on deproteinised plant fluid by cup plate assay," Fung Terri, vol. 1, pp. 5-9, 2018a.

[17]        J. Rajesh, "Yeast utilizing deproteinised leaf juice (DPJ) as a medium for growth and production of metabolites," Planning Arch, vol. 18, pp. 1716 – 1720, 2018b.

[18]        I. Yuri, "On the protease action of penicillium notatum  II," Journal of Biochemistry, vol. 31, pp. 237-247, 1950.

[19]        B. Makonnen and J. Porath, "Purification of an extracellular proteinase from penicillium notatum," European Journal of Biochemistry, vol. 6, pp. 425-431, 1968. Available at: https://doi.org/10.1111/j.1432-1033.1968.tb00464.x.

[20]        P. Kamath, V. Subrahmanyam, J. Rao, and P. Raj, "Optimization of cultural conditions for protease production by a fungal species," Indian Journal of Pharmaceutical Sciences, vol. 72, pp. 161-166, 2010. Available at: https://doi.org/10.4103/0250-474x.65017.

[21]        H. N. Bhatti and N. Saleem, "Characterization of glucose oxidase from penicillium notatum," Food Technology and Biotechnology, vol. 47, pp. 331-335, 2009.

[22]        J. Dingle, W. W. Reid, and G. Solomons, "The enzymic degradation of pectin and other polysaccharides. II—application of the ‘cup-plate’assay to the estimation of enzymes," Journal of the Science of Food and Agriculture, vol. 4, pp. 149-155, 1953. Available at: https://doi.org/10.1002/jsfa.2740040305.

Views and opinions expressed in this article are the views and opinions of the author(s), The Asia Journal of Applied Microbiology shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.