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ABSTRACT 

Xylanases are hydrolases which depolymerise the plant cell wall component-xylan, the second most abundant 

polysaccharide. They are mainly produced by microorganisms but can also be found in plants, marine algae, 

protozoans, crustaceans, insects, and snails. Because of their ability to break down xylan, these enzymes 

especially of microbial origin, have attracted more attention due to their potential role in  pulping  and  

bleaching  processes, in food and feed  industry, textile processes and organic waste treatment. Xylanases are 

more suitable in paper and pulp industry than lignin degrading enzymes. Owing to the increasing 

biotechnological importance of thermostable xylanases, many potential thermophilic and hyperthermophilic 

bacterial genera like Bacillus, Thermotoga, Streptomyces, Thermomyces, Pyrococcus and Sulfolobus and 

some fungal genera like Trichoderma, Aspergillus, Penicillum, Aureobasidium have been identified. As 

tolerance to higher pH and temperature are desirable properties of xylanase for effective use in pulp 

treatment, thermophillic organisms are of special interest as a source of novel thermostable xylanases. But 

for large scale production of xylanases, reduction of cost is still very challenging. This review encompasses 

the sources, classification, industrial and future prospects of xylanases with special reference to thermostable 

ones. 
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INTRODUCTION 

Xylanases are glycosidases (O-glycoside hydrolases) which catalyze the endohydrolysis of ß-1, 4-

glycosidic bonds in xylan. First reported in 1955 (Whistler R. and Masek E., 1955)- they were 

originally termed pentosanases, and were recognized by the International Union of 

Biochemistry and Molecular Biology (IUBMB) in 1961 when they were assigned the enzyme 

code EC 3.2.1.8. Their official name is endo-1, 4-ß-xylanase, but commonly used synonymous 

terms include xylanase, endoxylanase, ß-1, 4-D-xylan-xylanohydrolase, endo-1, 4-ß-D-
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xylanase, ß-1, 4-xylanase and ß-xylanase. Biodegradation  of  xylan is  a  complex  process  that  

requires the  synergistic action of  several  enzymes. A typical xylan degrading enzyme system is 

composed of ß-1, 4-endoxylanase, ß-xylosidase, α-L-arabinofuranosidase, α-glucuronidase, acetyl 

xylan esterase and phenolic acid (ferulic and p-coumaric acid) esterase (Coughlan M.P. and 

Hazlewood G.P., 1993). Production of multiple xylanases is a strategy that a microorganism 

uses for complete hydrolysis of xylan. A variety of microorganisms, including bacteria, 

actinomycetes, yeasts and filamentous fungi have been reported to produce xylanases 

(Nascimento R.P. et al., 2002; Poorma C.A. and Prema P., 2007; Bakri Y. et al., 2008). Recently the 

interest in xylanases has markedly increased due to the potential application in  pulping  and  

bleaching  processes  using  cellulase free  preparations, in food and feed industry,  textile  

processes,  the  enzymatic saccharification  of   lignocellulosic   materials  and organic waste 

treatment (Van der Broeck H.C. et al., 1990; Gilbert M. et al., 1992; GodfreyT. and West S., 1996; 

Mechaly A. et al., 1997; Wong K.K.Y. et al., 1998). Such enzymes provide eco-friendly alternative 

for effective bleaching of paper pulp without the use of toxic chlorine compounds and without 

adversely affecting the quality of the paper pulp.  Most of these processes are carried out at high 

temperature, so thermostable enzymes would be of more advantageous (Sonnleitner  B. and 

Fiechter A., 1983). Therefore, screening of thermophillic organisms is of special interest as a 

source of novel thermostable xylanases  (Becker P. et al., 1997; Lee D.W. et al., 1999; Beg Q.K. et 

al., 2000; Touzel J.P. et al., 2000) for their major application in paper and pulp industry for pre-

bleaching of Kraft pulp (Christov L.P. et al., 1999) 

 

Xylanase: Xylan hydrolyzing enzymes 

The complex structure of xylan needs different enzymes for its complete hydrolysis. Endo-1, 4-ß- 

xylanases (1, 4-ß-D-xylanxylanohydrolase, E.C.3.2.1.8) depolymerise xylan by the random 

hydrolysis of xylan backbone and 1, 4-ß-D-xylosidases (1,4-ß-D-xylan xylohydrolase 

E.C.3.2.1.37) split off small oligosaccharides. The side groups present in xylan are liberated by α -

L-arabinofuranosidase, α –D-glucuronidase, galactosidase and acetyl xylan esterase. 

Endo-xylanases are reported to be produced mainly by microorganisms like bacteria and fungi 

(Wong K.K.Y. et al., 1998; Kulkarni N. et al., 1999). However, there are certain reports regarding 

their origin from plants (Cleemput G. et al., 1997) and some members of higher animals also 

(Yamura I. et al., 1997).  There are lots of reports on microbial xylanases starting from 1960, but 

with an angle of plant pathology related problems (Subramaniyan S., 2000; Lebeda A. et al., 2001). 

Only during 1980‟s, the great impact of xylanases has been recognized in the area of biobleaching.  

Exo-1, 4-ß-D-xylosidase (EC 3.2.1.37) catalyses the hydrolysis of 1, 4-ß-D-xylo-oligosaccharides 

by removing successive D-xylose residues from the non-reducing end. The endoxylanases 

reported to release xylose during hydrolysis of xylan but no activity against xylobiose which 
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could be easily hydrolysed by ß-xylosidases. There are reports about Bacillus sp. (La-Grange D.C. 

et al., 2000) and different fungi (Poutanen K., 1998)  producing intracellular ß-xylosidases. 

α -Arabinofuranosidases (EC 3.2.1.55) hydrolyse the terminal, non-reducing α -L-

arabinofuranosyl groups of arabinans, arabinoxylans, and arabinogalactans. A number of 

microorganisms including fungi, actinomycetes and some bacteria have been reported to produce 

α -arabinosidases. The extreme thermophile Rhodothermus marinus is reported to produce α -L-

arabinofuranosidase with a maximum yield of 6.6 IU/ml (Gomes J. et al., 2000). Two different 

polypeptides with α -arabinofuranosidase activity from Bacillus polymyxa were characterized at the 

gene level (Morales P. et al., 1995). α -D-glucuronidases (EC 3.2.1.1) are required for the 

hydrolysis of  α -1, 2-glycosidic linkages between xylose and D-glucuronic acid or its 4-O-methyl 

ether linkage. The hydrolysis of the far stable α - (1, 2) - glycosidic linkage is the bottleneck in the 

enzymatic hydrolysis of xylan and the reported α - glucuronidases have different substrate 

requirements. Similar to lignin carbohydrate linkage, 4-O-methylglucuronic acid linkage forms a 

barrier in wood degradation. There are number of microorganisms reported to be producing α –

glucuronidases (Hazlewood G. P. and Gilbert H. J., 1993). The complete hydrolysis of natural 

glucuronoxylans requires esterases to remove the bound acetic and phenolic acids. Esterases 

break the bonds of xylose to acetic acid [acetyl xylan esterase (EC 3.1.1.6)], arabinose side chain 

residues to ferulic acid (feruloyl esterase) and arabinose side chain residue to p-coumaric acid (p-

coumaroyl esterase). Cleavage of acetyl, feruloyl and p-coumaroyl groups from the xylan is 

helpful in the removal of lignin. It may contribute to lignin solubilisation by cleaving the ester 

linkages between lignin and hemicelluloses. If used along with xylanases and other xylan 

degrading enzymes in biobleaching of pulps, the esterases could partially disrupt and loosen the 

cell wall structure (Puls J., 1997). 

 

Xylanases: Families and catalytic sites 

Different types of xylanases come under the category of glycosyl hydrolases and these can be 

further classified in to two families (Collins T. et al., 2005). One family has the designation of 

Family 10 or (F) and the other is Family 11 or (G). (Wong K.K.Y. et al., 1988) classified microbial 

xylanases into two groups on the basis of their physicochemical properties such as molecular mass 

and isoelectric point (pI), rather than on their different catalytic properties. While one group 

consists of high molecular mass enzymes with low pI values, the other group comprises of low 

molecular mass enzymes with high pI values, but exceptions are there. The above observation 

was later found to be in tune with the classification of glycanases on the basis of hydrophobic 

cluster analysis and sequence similarities (Sapag A. et al., 2002). The high molecular weight 

endoxylanases with low pI values belong to “glycanase family 10” formerly known as family „F‟ 

while the low molecular mass endoxylanases with high pI values are classified as “glycanase 

family 11,” formerly family G (Kuno A. et al., 2000).   
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Recently there has been the addition of 123 proteins in Family 11, out of which, 113 are 

xylanases/ORFs for xylanases, 1 unnamed protein and 9 sequences from US patent collection. 

But, 150 members are present in family 10, of which 112 are having xlyanase activity. (Biely P. et 

al., 1985; Biely P. et al., 1997) after extensive study on the differences in catalytic properties 

among the xylanase families concluded that endoxylanases of family10 in contrast to the members 

of family 11, are capable of attacking the glycosidic linkages next to the branch points and 

towards the non-reducing end. While endoxylanases of family 10 require two unsubstituted 

xylopyranosyl residues between the branches, endoxylanases of family 11 require three 

unsubstituted consecutive xylopyranosyl residues. According to them, endoxylanases of family 10 

possess several catalytic activities, which are compatible with β-xylosidases. The endoxylanases of 

family 10 liberate terminal xylopyranosyl residues attached to a substituted xylopyranosyl 

residue, but they also exhibit aryl-ß-D-xylosidase activity. After conducting an extensive factor 

analysis study, (Sapag A. et al., 2002) applied a new method without referring to previous 

sequence analysis for classifying Family 11 xylanases, which could be subdivided in to six main 

groups. Groups I, II and III contain mainly fungal enzymes. The enzymes in groups I and II are 

generally 20 kDa from Ascomyceta and Basidiomyceta. The group I enzymes have basic pI values 

while those of group II exhibit acidic pI. Enzymes of group III are mainly produced by anaerobic 

fungi. Meanwhile, the bacterial xylanases are divided in to three groups (A, B and C). Group A 

contains mainly enzymes produced by members of the Actinomycetaceae and the Bacillaceae families, 

strictly aerobic gram-positive ones. Groups B and C are more closely related and contain mainly 

enzymes from anaerobic gram-positive bacteria, which usually live in the rumen. Xylanases from 

aerobic gram-negative bacteria are found in subgroup Ic as they closely resemble to the fungal 

enzymes of group I. Unlike previous classifications, they also reported a fourth group of fungal 

xylanases consisting of only two enzymes (Sapag A. et al., 2002). 

 

Diverse forms of xylanases 

Streptomyces sp. B-12-2 produces five endoxylanases when grown on oat spelt xylan (Vieille and 

Zeikus G.J., 2001). The culture filtrate of Aspergillus niger was composed of 15, and Trichoderma 

viridae of 13 xylanases (Kuno A. et al., 2000). The most outstanding case regarding multiple forms 

of xylanases was production of more than 30 different protein bands separated by analytical 

electrofocusing from Phanerochaete chrysosporium grown in avicel (Tsujibo H. et al., 1997). There 

are several reports regarding fungi and bacteria producing multiple forms of xylanases (Wong 

K.K.Y. et al., 1988; Tsujibo H. et al., 1997).  The filamentous fungus Trichoderma viridae and its 

derivative T. reesii produce three cellulase free β-1, 4- endoxylanases (Biely P. et al., 1985). Due to 

the complex structure of heteroxylans, all of the xylosidic linkages in the substrates are not 

equally accessible to xylan degrading enzymes. Therefore, hydrolysis of xylan requires the action 

of multiple xylanases with overlapping but different specificities (Wong K.K.Y. et al., 1988). The 
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fact that protein modification (e.g. post translational cleavage) leads to the genesis of 

multienzymes has been confirmed by various reports (Leathers T.D., 1988; Li  X.L. and 

Ljungdahl L.G., 1994).  However, several other factors could be responsible for the multiplicity of 

xylanases. These include differential mRNA processing, post-secretional modification by 

proteolytic digestion, and post translational modification such as glycosylation and 

autoaggregation (Biely P. et al., 1985). Multiple xylanases can also be the product from different 

alleles of the same gene (Wong K.K.Y. et al., 1988) .  However, some of the multiple xylanases are 

the result of independent genes (Coughlan M.P. and Hazlewood G.P., 1993). 

 

Xylanase producing microorganisms 

Several microorganisms including bacteria, yeasts, filamentous fungi and actinomycetes, have 

been reported to be readily hydrolyzing xylan by synthesizing 1, 4-ß-D endoxylanases (E.C. 

3.2.18) and ß-xylosidases (EC.3.2.1.37). According to many of the early reports, pathogenicity of 

xylanase producers to plants was a unifying character and it was thought that ß -xylanases 

together with cellulose degrading enzymes play a major role during primary invasion of the host 

tissues (Esteban R. et al., 1982). There are reports regarding the induction of the biosynthesis of 

ethylene (Fuchs Y. et al., 1989) band two classes of pathogenesis-related proteins in tobacco plants 

by the microbial xylanases (Lotan T. and Fluhr R., 1990). Thus these points reveal that certain 

xylanases can elicit defense mechanisms in plants. These actions may be mediated by specific 

signal oligosaccharides, collectively known as oligosaccharins or it may be due to the functioning 

of enzymes themselves or their fragments as the elicitors (Dean J.F.D. and Anderson J.D., 1991; 

Dean J.F.D. et al., 1991). Most of the fungal plant pathogens produce plant cell wall 

polysaccharide degrading enzymes (Subramaniyan S., 2000; Lebeda A. et al., 2001). These 

enzymes result in the softening of the region of penetration by partial degradation of cell wall 

structures. Xylanases have been reported in Bacillus, Streptomyces and other bacterial genera that 

do not have any role related to plant pathogenicity (Esteban R. et al., 1982). Since the introduction 

of xylanases in paper and pulp and food industries (Biely P. et al., 1985; Viikari V. et al., 1994) 

there have been many reports on xylanases from both bacterial and fungal microflora (Kulkarni 

N. et al., 1999). 

 

Thermophilic  xylanases 

A number of thermophilic (optimal growth at 50–80 °C) and hyperthermophilic (optimal growth 

at >80 °C) xylanase producing microorganisms have been isolated from a variety of sources, 

including terrestrial and marine solfataric fields, thermal springs, hot pools and self-heating 

decaying organic debris (Dean J.F.D. and Anderson J.D., 1991; Dean J.F.D. et al., 1991; Viikari V. 

et al., 1994; Harris G.W. et al., 1997; Vieille and Zeikus G.J., 2001; Singh S. et al., 2003; Sunna A. 

and Bergquist P.L., 2003; Cannio R. et al., 2004). The majority of the xylanases produced have 



The International Journal of Biotechnology 1(1):1-20 

 

 
6 

© 2012 Conscientia Beam. All Rights Reserved. 

 

been found to belong to families 10 and 11, with as yet, no reported studies of thermophilic 

xylanases belonging to any of the other glycoside hydrolase families. Interestingly, the gene for 

the thermostable xylanase (half life of 8 minutes at 100 °C) from the extreme thermophilic 

archaeon Thermococcus zilligii (Sunna  A. et al., 1997) has thus far proven noncompliant to cloning 

with family 10 and 11 consensus primers (Sunna A. and Bergquist P.L., 2003) suggesting that this 

enzyme may belong to one of the other less well studied glycoside hydrolase families i.e.,families 

5, 7, 8 or 43 or indeed to another as yet unknown xylanase family.                                                                                                                                                                                      

Family 10 xylanases have been isolated from various thermophilic and hyperthermophilic 

organisms, including Thermotoga sp. (Winterhalter C. et al., 1995), Caldicellulosiruptor sp.(Zverlov 

V. et al., 1996), Rhodothermus marinus (Luthi E. et al., 1990), Bacillus stearothermophilus (Abou-

Hachem M. et al., 2002), Thermoascus aurantiacus (Khasin A. et al., 1993) and C. thermocellum(Lo 

Leggio L. et al., 1999). Indeed, a family 10 xylanase, XynA from Thermotoga sp. strain FjSS3-B.1 is 

one of the most thermostable xylanases reported to date with an apparent optimum temperature 

for activity of 105 °C, and a half life of 90 minutes at 95 °C(Simpson H.D. et al., 1991). While less 

frequently studied, family 11 thermophilic xylanases have also been isolated from Thermomyces 

lanuginosus (Schlacher A. et al., 1996; Singh S. et al., 2003), Paecilomyces varioti(Kumar P.R. et al., 

2000), Caldicellulosiruptor sp Rt69B.1. (Morris D.D. et al., 1999), Dictyoglomus thermophilum 

(McCarthy A.A. et al., 2000), Chaetomium thermophilum (Hakulinen N. et al., 2003) and Nonomuraea 

flexuosa (Hakulinen N. et al., 2003). However, Bacillus strain D3(Harris G.W. et al., 1997; Gruber 

K. et al., 1998) was the most thoroughly investigated. Xylanases from Nonomuraea flexuosa and 

Dictyoglomus thermophilum are among the most stable, with apparent temperature optima of 80 and 

85 °C, respectively. In addition to the above mentioned xylanase producing bacteria, a number of 

xylanase producing hyperthermophilic archaea have also been recently reported e.g. Thermococcus 

zilligii(Cady S.G. et al., 2001) , Pyrococcus furiosus(Cady S.G. et al., 2001), Sulfolobus 

solfataricus(Cannio R. et al., 2004), Pyrodictium abyssi (Andrade C.M.M.C. et al., 1999) and a number 

of Thermofilum strains(Andrade C.M.M.C. et al., 1999). 

 

Crystal structure analyses, sequence alignments and mutagenesis studies have indicated that 

mesophilic and thermophilic xylanases are very similar. Enhanced stability of thermophilic 

xylanases is probably due to an array of minor modifications which include: an increase in the 

number of salt bridges and hydrogen bonds (Gruber K. et al., 1998; Hakulinen N. et al., 2003), an 

improved internal packing(Hakulinen N. et al., 2003), an increased number of charged surface 

residues (Turunen O. et al., 2002), the presence of tandem repeats of thermostabilising 

domains(Fontes C.M. et al., 1995; Winterhalter C. et al., 1995; Zverlov V. et al., 1996)  and/or the 

introduction of disulphide bridges,  particularly at the N- or C- termini or in the α-helix regions 

(Wakarchuk W.W. et al., 1994; Kumar P.R. et al., 2000; Turunen O. et al., 2001). Recently, the 

thermostabilising role of calcium on a modular family 10 xylanase was demonstrated(Abou-
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Hachem M. et al., 2002), while the Bacillus D3 xylanase was also shown to use a very unique 

adaptation strategy.  Here a series of surface aromatic residues form clusters or „„sticky patches‟‟ 

between pairs of molecules and these intermolecular hydrophobic interactions are believed to 

contribute to the thermostability of this enzyme (Harris G.W. et al., 1997; Connerton I. et al., 

1999). Collectively, or singly, all the above mentioned modifications may improve the network of 

interactions within the protein, thereby leading to a more rigid and stable enzyme. 

 

Bacterial Xylanases 

Bacteria, just like in case of many other industrial enzymes, fascinated the researchers for alkaline 

thermostable xylanase producing trait (Table 1). Noteworthy bacteria producing high levels of 

xylanase activity at alkaline pH and high temperature are the members of the genus Bacillus. 

Bacillus SSP-34 produces higher levels of cellulose deficient xylanase activity under optimum 

nitrogen condition (Subramaniyan S. et al., 2001). This bacterium produces a xylanase activity of 

506 IU/ml in the optimized medium (Subramaniyan S., 2000).  Earlier (Ratto M. et al., 1992) 

reported xylanase with an activity of 400 IU/ml from Bacillus circulans. It had optimum activity at 

pH 7 and 40% of its activity was retained at pH 9.2. Bacillus stearothermophilus strain T6, reported 

to be producing cellulase free xylanases, actually had some cellulolytic activity (Shoham Y. et al., 

1992; Khasin A. et al., 1993; Lundgren K.R. et al., 1994). Streptomyces cuspidosporus produced 40-49 

U/ml in xylan medium and was associated with cellulases (CMCase, 0.29 U/ml)  (Maheswari M. 

U. and Chandra T. S., 2000). Bacillus sp. strain NCL 87-6- 10 produced 93 U/ml of xylanase in 

the zeolite induced medium which was more effective than Tween 80 medium (Balakrishnan H. et 

al., 2000). Another Bacillus sp., Bacillus circulans AB- 16 produces 19.28 U/ml of xylanase when 

grown on rice straw medium (Dhillon A. et al., 2000). Streptomyces sp. QG-11-3 was found to be 

producing both xylanase (96 U/ml) and polygalacturonase (46 U/ml) (Beg Q.K. et al., 2000). 

Rhodothermus marinus was found to be producing thermostable xylanases of approximately 1.8-

4.03 IU/ml but a detectable amount of thermostable cellulolytic activity was also seen (Dahlberg 

L. et al., 1993; Hreggvidsson G.O. et al., 1996). Most of the other bacteria which degrade 

hemicellulosic materials are reported to be potent cellulase producers which include Streptomyces 

roseiscleroticus NRRL-B-11019 (xylanase 16.2 IU/ml and cellulase 0.21 IU/ml) (Grabski A.C. and 

Jeffries T.W., 1991). The strict thermophilic anaerobe Caldocellum saccharolyticum possesses 

xylanases with optimum activity at pH values 5.5-6.0 and at temperature 70oC (Luthi E. et al., 

1990) . (Mathrani I.M. and Ahring B.K., 1992) reported xylanases from Dictyoglomus sp. having 

optimum activities at pH 5.5 and 90°C, but with significant pH stability at pH values 5.5-9.0.  
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Table-1. Profile of thermostable bacterial xylanases 

 
Microorganism 

Mol. 
Wt. 
(KDa) 

Optimum pH 
and 
Temperature 

Stabilities at  Reference 

pH Temperature pH 
(hrs) 

Temp. 
(hrs) 

BACTERIA 

Aeromonas caviae ME1 20 7 50 3.0-
4.0 

6.5-8 (Kubata et al., 1992) 

Bacillus amyloliquefaciens 18.5-
19.6 

6.8-
7.0 

80 9 50 (Breccia et al., 1998) 

Bacillus circulans WL-12 85 5.5-7 - - -  (Subramaniyan S. et 
al., 2001) 

Bacillus sp. strain SPS-0 99 6.0 75 - 70 (4)  (Bataillon et al., 
2000) 

Bacillus sp.strain 41-
1(36) 

36 9 50 - - (Nakamura et al., 
1993) 

Bacillus sp.strain TAR-1 40 6 75 - - (Nakamura et al., 
1994) 

Bacillus sp. strain K-1 23 5.5 60 12 50 (Ratanakhanokchai 
et al., 1999) 

Bacillus stearothermophilus 
T-6 

43 6.5 75 - 70 (14 
1/2 ) 

(Khasin A. et al., 
1993) 

Streptomyces  T-7 20.643 4.5-
5.5 

60 5.0 
(144) 

37 (264) (Keskar et al., 
1989) 

Thermotoga maritima  6.5 85  95 

(121/2) 

 (Bergquist et al., 
2001) 

Thermotoga thermarum 266  6 80 - - (Bergquist et al., 
2001) 

Bacillus pumilus  - 8.5 
 
 
 

55 - - (Mahilrajan et al., 
2012) 

 

Fungal xylanases and associated problems 

The optimum pH for xylan hydrolysis is around 5 for most of the fungal xylanases although they 

are normally stable at pH 3 - 8 (Table 2). Most of the fungi produce xylanases, which tolerate 

temperatures below 50 °C. In general, with rare exceptions, fungi reported to be producing 

xylanases having an initial cultivation pH lower than 7. Nevertheless it is different in the case of 

bacteria (Table 1). The pH optima of bacterial xylanases are in general slightly higher than the 

pH optima of fungal xylanases (Khasin A. et al., 1993).  
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Table-2.  Profile of thermostable fungal xylanases 

In most of the industrial applications, especially paper and pulp industries, the low pH required 

for the optimal growth and activity of xylanase necessitates additional steps in the subsequent 

stages which make fungal xylanases less suitable. Although high xylanase activity was reported 

from several fungi, the presence of considerable amount of cellulase activity and lower pH optima 

make the enzyme less suitable for pulp and paper industries. (Gomes J. et al., 1992) reported 

xylanase activity of 188.1 U/ml at optimum pH 5.2 and FPase activity of 0.55 U/ml at optimum 

pH 4.5 from Trichoderma viridae. Similar to T.viridae, T. reesei was also known to produce higher 

xylanase activity, approximately 960 IU/ml and cellulase activity - 9.6 IU/ml (Bailey M.J. et al., 

1993). Like Trichoderma spp., Schizophillum commune is also one of the high xylanase producers 

 
Microorganisms 

Mol. 
Wt. 
(KDa) 

Optimum pH 
and 

Temperature 

Stabilities at Reference 

pH Temperature PH 
(hrs) 

Temp. (hrs) 

FUNGI 
Acrophialophora nainiana 22 7.0 55 - 60 (1)    (Salles et 

al., 2000) 

Aspergillus awamori 39 5.5-6 55 - - (Kormelink 
et al., 1993) 

Aspergillus nidulans 34 6 56 4.0-6.7 56 (Fernadez 
et al., 1994) 

Aspergillus sojae 32.7 5.0 60 5-8 (24) 50 (10 
minutes) 

   (Kimura 
et al., 1995) 

Aureobasidium pullulans Y-
2311-1 

25 4.8 54 4.5 50    (Kang et 
al., 1996) 

Aureobasidium pullulans 
ATCC 42023 

21 3-4.5 35 - -     (Vadi et 
al., 1996) 

Cephalosporium sp.strain 
RYM-202 

35 7.5-8.0 50 - -     (Kang et 
al., 1996) 

Humicola insolens 6.0 6-6.65 55-60 - -    (Vadi et 
al., 1996) 

Penicillium purpurogenum 33 7.0 60 6.0-7.5 
(24) 

40 (3)    (Belancic 
et al., 1995) 

Trichoderma 
longibrachiatum 

37.7 5-6 45 5 -     (Chen et 
al., 1997) 

Trichoderma viridae 22 5 53 - -     (Ujiie et 
al., 1991) 

Thermomyces lanuginosus 
Cla 

- 6.0 55 5-9 55 (Mendoza 
et al., 2006) 
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with a xylanase activity of 1244 U/ml, CMCase activity of 65.3 U/ml and FPase activity of 5.0 

U/ml .  Among white rot fungi, a potent plant cell wall degrading fungus - Phanerochaete 

chrysosporium produces a xylanase activity of 15-20 U/ml in the culture medium, but it also 

produces high amounts of cellulase activity measuring about 12% of maximum xylanase activity  

(Copa-Patino J.L. et al., 1993).  (Singh S. et al., 2000) reported a xylanase activity of 3576 U/ml 

from Thermomyces lanuginosus strain. Aspergillus niger sp. produces only 76.60 U/ml of xylanase 

activity after 5.5 days of fermentation (Bi R. et al., 2000). Reports on fungal xylanases with 

negligible cellulolytic activity are very rare like the Thermomyces lanuginosus xylanase with traces 

of cellulase activity (Gomes J. et al., 1993). Another major problem associated with fungi is, the 

reduced xylanase yield in fermenter studies. Agitation is normally used to maintain the medium 

homogeneity, but the shearing forces in fermenter can disrupt the fragile fungal biomass leading 

to low productivity (Subramaniyan S. and Prema P., 2002).   Higher rate of agitation speed leads 

to hyphal disruption which may reduce xylanase activity. Even though there are differences in the 

growth conditions including pH, agitation, aeration and optimum conditions for xylanase activity 

(Steiner W. et al., 1987; Grabski A.C. and Jeffries T.W., 1991; Gomes J. et al., 1992; Ratto M. et al., 

1992; Copa-Patino J.L. et al., 1993; Gomes J. et al., 1993; Subramaniyan S. et al., 1997; 

Subramaniyan S. and Prema P., 1998; Subramaniyan S. and Prema P., 2002), there is considerable 

overlapping in the molecular biology and biochemistry of prokaryotic and fungal xylanases 

(Gilbert  H.J. and Hazelwood G.P., 1993). 

 

Xylanases: Industrial aspects 

Bacterial xylanases having broad range of temperature and pH stability are preferred in industry 

(Kulkarni N. et al., 1999). Similarly, xylanases extracted from actinomycetes are also operational 

over a broad range of reaction parameters (Beg Q. K. et al., 2001) whereas, fungal xylanases are 

stable under acidic pH conditions, varying from pH 4 to 6 only(Li  X.L. and Ljungdahl L.G., 

1994) .  

 

Biobleaching of Pulp   

Xylan doesn‟t form tightly packed structures hence is more accessible to hydrolytic enzymes. 

Consequently, the specific activity of xylanase is 2-3 times greater than the hydrolases of other 

polymers like crystalline cellulose (Gilbert  H.J. and Hazelwood G.P., 1993). In the pulping 

process, the resultant pulp has a characteristic brown colour owing to the presence of residual 

lignin and its derivatives. In order to obtain white and bright pulp suitable for manufacturing 

good quality paper, it is necessary to bleach the pulp to remove the constituents such as lignin 

and its degradation products (Lundgren K.R. et al., 1994).  Biobleaching of pulp is reported to be 

more effective with xylanases than with lignin degrading enzymes. This is because the lignin is 

cross-linked mostly to the hemicelluloses and the hemicellulose is more readily depolymerised 
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than lignin (Subramaniyan S. and Prema P., 2002). Removal of even a small portion of the 

hemicellulose can be sufficient to open up the polymer and facilitate removal of the residual lignin 

by mild oxidants. The principal objective of the application of biotechnological methods is the 

achievement of selective hemicellulose removal without degrading cellulose. Degradation of 

cellulose is the major problem associated with conventional pulping process, which invariably 

affects the cellulose fibre, and thus the quality of paper (Shoham Y. et al., 1992). Removal of xylan 

from the cell wall leads to a decrease in energy demand during bleaching. Therefore enzymatic 

treatments of pulp using xylanases have better prospects in terms of lower cost and improved 

fiber quality. 

 

Bio- processing of Fabrics 

Enzymatic treatment can significantly increase the water absorbing properties of fiber by 

removing complex impurities situated in the primary cell wall. The advantage associated with 

enzymatic treatment is the highly specific action of the enzyme. Xylanases specifically act on the 

hemicellulosic impurities and cause their removal. Enzymatic treatment does not cause any 

strength loss of the fiber (Dhiman S. S. et al., 2008). 

 

 

Other applications of xylanolytic enzymes 

In cereals like barley, arabinoxylans form the major non-starch polysaccharide. The 

arabinoxylanases are partly water soluble and result in a highly viscous aqueous solution. This 

high viscosity of cereal grain water extract might be involved in brewing problems (decreased 

rate of filtration or haze formation in beer) and is a negative parameter for the use of cereal grains 

in animal feed (Dervilly G. et al., 2001; Dervilly G. et al., 2002) .  A better solution for this 

problem could be derived from the application of xylanases for pretreating the arabinoxylan 

containing substrates.  

 

Sugars like xylose, xylobiose and xylooligomers can be prepared by the enzymatic hydrolysis of 

xylan (Wong K.K.Y. et al., 1988). Bioconversion of lignocelluloses to fermentable sugars has the 

possibility to become a small economic prospect. For example, xylitol- a five- carbon sugar is used 

as a natural food sweetener and its recovery from the xylan fraction is about 50-60% or 8-15% 

based on the raw material employed. A product of hemicellulosic hydrolysate, 2, 3- butanediol, is a 

valuable chemical feedstock because of its application as a solvent, liquid fuel, and as a precursor 

of many synthetic polymers and resins. Dehydration of 2, 3- butanediol yields the industrial 

solvent methyl ethyl ketone, which is more suited as a fuel.  Another value added product 

obtained from hemicellulose hydrolysate is lactic acid, which is used in food, pharmaceutical and 

cosmetic industries. 
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Pretreatment of agricultural silage and grain feed by xylanases has been reported to improve its 

nutritional value (Gilbert  H.J. and Hazelwood G.P., 1993). Most of low quality feed stuff contains 

large amounts of incompletely digestible nutrients and energy values. Pretreatment of these low-

quality feed stuffs with xylanases improve their digestibility as it reduces viscosity and increases 

absorption by breaking down the non- starch polysaccharides in high fiber rye and barley based 

feeds.  

 

Future prospects 

A principal hurdle in the commercialization of enzymatic processes is the bulk production of 

enzymes at a cost effective rate. In order to meet this goal, such strategies should be explored by 

which cost-efficient bulk production can be achieved. Therefore, coming years will see 

advancement in production methods to exploit such microbial species that can easily metabolize 

the available waste material by using the simplest techniques at affordable prices. In future, deep 

knowledge of molecular aspect of xylanase and cloning in suitable expression vectors will be the 

major target. This is so because new industrial uses of xylanases have been explored, and such 

kinds of xylanases are required that are stable and active over a broad range of pH and 

temperature. Therefore, cloning of genes encoding for the thermophillic alkaline form of 

xylanases needs meticulous attention of microbiologists and molecular biologists for their 

commercial exploitation.  
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