

Artificial intelligence and the cultivation of creativity in education: Pedagogical opportunities and challenges

 Sevinj Hajiyeva

Azerbaijan State Pedagogical University, Azerbaijan.

Email: hajiyevasevinj26@gmail.com

ABSTRACT

Article History

Received: 5 August 2025

Revised: 15 October 2025

Accepted: 12 December 2025

Published: 7 January 2026

Keywords

Artificial intelligence

Creativity in education

Pedagogical integration

Personalized learning

Student performance.

In the contemporary era, education systems are entering a new phase of transformation driven by the rapid advancement of technology. In particular, the integration of artificial intelligence (AI) in educational processes presents both opportunities and challenges. AI-based tools facilitate the design of individualized learning trajectories, enable the selection of resources aligned with learners' interests and abilities, and enhance assessment and feedback mechanisms. These capabilities, in turn, promote the development of creative thinking, strengthen problem-solving skills, and render learning experiences more interactive. On the other hand, the deployment of AI in education raises ethical, pedagogical, and technological constraints. Concerns include the potential diminishment of students' creative potential due to excessive reliance on automated systems, shifts in the professional roles and evaluation of teachers, and issues regarding data security and intellectual property protection. Moreover, the standardized nature of AI-driven approaches may limit the diversity of creative thought. Research indicates that optimal outcomes are achieved when human creativity and AI are employed complementarily. In this regard, the primary challenge for educational policymakers, instructors, and technologists is to develop a balanced, ethical, and creativity-enhancing model for AI integration. This article provides a multidimensional analysis of the interplay between AI and creativity in education, evaluates prospective opportunities and associated risks, and offers both theoretical and practical recommendations for future research directions.

Contribution/ Originality: This study contributes to the existing literature by examining the impact of artificial intelligence on creative potential in education through both theoretical and practical perspectives. This study uses a quantitative and qualitative analysis methodology, highlighting how AI reshapes teacher and student roles, supports personalized learning, and fosters collaborative, ethical, and innovative educational practices.

1. INTRODUCTION

Since the early 21st century, global education systems have undergone substantial transformation under the influence of rapidly evolving technological environments. One of the primary driving forces behind this transformation is artificial intelligence (AI) technologies. The integration of AI into educational processes transcends the limitations of traditional learning models, creating new opportunities while simultaneously raising novel questions. Tools such as personalized learning platforms, adaptive assessment systems, virtual teaching assistants, learning analytics, and automated content generation are increasingly being piloted and implemented in various

countries. This process not only modernizes instructional methodologies but also cultivates a specialized environment for the development of creative skills.

According to [UNESCO \(2021\)](#), the application of AI in education expands the boundaries of traditional instructional models by enabling personalized learning, adaptive assessment, and learning analytics. Concurrently, some scholars emphasize that AI represents not merely a technological innovation but also a socio-cultural phenomenon that necessitates a reconsideration of pedagogical approaches ([Selwyn, 2019](#)).

Creativity is recognized as a strategic priority in contemporary educational philosophy. The growing demand for innovation skills in the global labor market necessitates the formation of learners not only as consumers of knowledge but also as producers of knowledge. In this context, leveraging AI to enhance students' creative potential assumes particular significance. However, current realities indicate that excessive reliance on automated systems may weaken students' habits of independent thinking and obscure the value of creative activity.

[Florida \(2002\)](#), through the "creative class" concept, it is argued that future economic development and social dynamism will depend on creative capacities. Consequently, fostering learners as knowledge producers rather than mere consumers is of critical importance ([Craft, 2011](#)). While AI offers significant opportunities to support creative processes, some researchers caution that its excessive use may undermine students' independent thinking skills ([Zawacki-Richter, Marín, Bond, & Gouverneur, 2019](#)).

Moreover, the broad implementation of AI in education is accompanied by ethical, pedagogical, and social challenges. Issues such as information security, plagiarism risks, shifts in the professional roles of teachers, and unequal access to technological resources remain unresolved ([Holmes, Bialik, & Fadel, 2021](#)). Therefore, examining the interplay between AI and creativity within the frameworks of pedagogical theory and instructional practice remains highly relevant.

The primary objective of this article is to provide a comprehensive analysis of the impact of AI technologies on creative potential in education, identify existing opportunities and challenges, and propose evidence-based recommendations for balanced implementation. To achieve this objective, the article first presents a concise review of theoretical and empirical studies on the topic, followed by an analysis of the opportunities and limitations of AI in education, and finally discusses the complementary potential of human creativity and technology.

1.1. Research Questions

The primary objective of this article is to investigate the impact of artificial intelligence (AI) on creative potential in education. Based on this objective, the following research questions have been formulated:

1. To what extent does the use of AI tools in educational institutions influence students' creative activities?
2. How do AI technologies enhance students' personalized learning and problem-solving skills?
3. In what ways do students maintain their independent and creative thinking while using AI?
4. How do AI tools affect collaboration in group projects and classroom communication dynamics?
5. How is the teacher's role as facilitator and mentor shaped in the pedagogical integration of AI?

2. LITERATURE REVIEW

The use of artificial intelligence (AI) in education has recently emerged as a significant focus within scholarly discourse. According to [UNESCO \(2021\)](#), AI tools are already demonstrating practical outcomes in personalized learning, adaptive assessment, and learning analytics. Research indicates that AI technologies enable the tracking of students' learning trajectories and the selection of content aligned with their interests and competencies ([Luckin, Holmes, Griffiths, & Forcier, 2016](#)). This aligns with constructivist pedagogical approaches, supporting the development of students as active knowledge creators.

Creativity in educational theory is interpreted through various lenses. [Guilford \(1950\)](#) identified creativity as a core component of human cognition, emphasizing divergent thinking. Subsequent studies have framed creativity not

solely as an individual skill but as a dynamic process emerging within social and cultural contexts (Craft, 2011). Sawyer (2012) further conceptualized creative learning within the framework of collaboration and social interaction, highlighting the influence of the educational environment on creative outcomes.

Research on the relationship between AI and creativity presents a dual perspective. One body of literature suggests that AI stimulates creative processes and provides students with broader opportunities for experimentation (Holmes et al., 2021). Conversely, other studies argue that excessive reliance on automated tools may undermine students' independent thinking skills, fostering a "ready-made answer" culture (Selwyn, 2019). Consequently, the impact of AI on creative cognition remains insufficiently understood.

Some existing studies investigate the pedagogical potential of AI at a theoretical level, while others assess practical applications through empirical methods. The systematic review by Zawacki-Richter et al. indicates that AI is predominantly applied in higher education for three purposes: personalization of learning, automated assessment, and student support (Zawacki-Richter et al., 2019). However, empirical evidence regarding the development of creative skills remains limited. This gap underscores the need for future research to explore more deeply the interplay between AI and creativity.

Moreover, ethical and social considerations occupy a central place in the literature. Holmes et al. emphasize that the application of AI in education entails both opportunities and risks, highlighting the necessity of establishing ethical frameworks (Holmes et al., 2021). Key issues include data privacy, changes in teachers' professional identity, and technological inequities. Overall, the current body of literature indicates that the relationship between AI and creativity is multifaceted and sometimes contradictory, necessitating investigation across both pedagogical and social dimensions.

3. METHODOLOGY

3.1. Research Design

This study employed a mixed-methods approach, combining quantitative surveys and qualitative interviews to comprehensively examine the impact of artificial intelligence (AI) on educational processes and student creativity. A total of 150 students and 20 teachers from various higher education institutions participated in the research. Participants were selected using convenience and purposive sampling techniques to ensure representation across different disciplines.

Data collection instruments included structured questionnaires, semi-structured interviews, and practical AI-assisted creative assignments. The questionnaires assessed students' frequency of AI usage, perceived impact on learning outcomes, and creative engagement using Likert-scale items. Interviews explored teachers' and students' perspectives on the pedagogical integration of AI and its effects on creativity. Practical assignments allowed for the evaluation of students' creative output with AI support.

Data analysis was conducted using both quantitative and qualitative methods. Quantitative survey data were analyzed with descriptive statistics, correlation analysis, and *t*-tests using SPSS to determine relationships between AI usage and creativity outcomes. Qualitative interview data were subjected to thematic analysis to identify key patterns and insights.

Ethical considerations: The research was conducted under full ethical approval. All participants provided informed consent prior to participation. Confidentiality and anonymity were strictly maintained, and all data were used exclusively for scientific research purposes.

3.2. Sample and Participants

This research was carried out with a cohort of 150 students and 20 faculty members from higher education institutions. Participants represented a wide range of academic disciplines, thereby enhancing the generalizability of

the findings across diverse educational contexts. A combination of convenience and purposive sampling strategies was employed to ensure the systematic and purposeful recruitment of participants.

3.3. Data Collection Tools

1. Surveys and Questionnaires: Students' use of AI tools, as well as their learning and creativity experiences, were quantitatively assessed. Responses were collected using Likert-type items ranging from 1 to 5.
2. In-Depth Interviews: Qualitative data regarding the development of creativity and the use of AI were gathered from 10 instructors and 20 students. The interviews were conducted in a semi-structured format to allow for a comprehensive exploration of perspectives.
3. Practical Exercises and Assignments: Students submitted creative projects utilizing AI tools. The outcomes were analyzed through both instructor evaluations and learning analytics to provide a holistic assessment of performance.

3.4. Data Analysis

- Quantitative data: Descriptive statistics, correlation analyses, and *t*-tests were conducted using SPSS to examine the relationships between AI usage and students' creative performance.
- Qualitative data: Semi-structured interviews were analyzed employing thematic analysis, with key themes and representative examples systematically identified.

3.5. Ethical Issues

This research was carried out following full ethical approval, with all participants providing informed consent prior to their involvement. Participant confidentiality was rigorously ensured, and all collected data were employed solely for scientific and research purposes.

4. OPPORTUNITIES OF ARTIFICIAL INTELLIGENCE IN EDUCATION

4.1. Personalized Learning

One of the most significant opportunities of Artificial Intelligence (AI) in education is personalized learning. AI tools can analyze students' knowledge levels, learning pace, and interests, providing tailored instructional materials (Luckin et al., 2016). Unlike the traditional "one-size-fits-all" approach, this model enables more flexible and effective learning. As highlighted in the systematic review by Zawacki-Richter et al. (2019) in higher education, AI is primarily employed to offer individualized support and adaptive content for students (Zawacki-Richter et al., 2019).

4.2. Assessment and Feedback

Automated assessment systems represent another major application of AI. These systems efficiently evaluate students' written assignments and test results, delivering objective grading (Holmes et al., 2021). This not only reduces teachers' workload but also provides students with timely feedback. Furthermore, learning analytics can identify students' weaknesses and inform the development of personalized strategies to foster their academic progress (Ifenthaler & Yau, 2020).

4.3. Supporting Creativity

AI also supports students' creative activities. For instance, text-generating programs and visual content creation tools assist learners in idea generation and exploring alternative solutions (Popenici & Kerr, 2017). In this regard, AI does not replace creativity but rather expands its scope. Sawyer emphasizes that creative activity is more productive in interactive and social environments, and AI tools can enhance this process by facilitating collaboration and group work (Sawyer, 2012).

4.4. Inclusive Education

AI-based applications contribute to promoting equity within educational settings. For example, adaptive materials designed for students with hearing or visual impairments foster the development of inclusive education (UNESCO, 2021). Additionally, virtual assistants and chatbots provide students with continuous, 24/7 support, ensuring uninterrupted and accessible learning experiences.

5. LIMITATIONS AND CHALLENGES OF ARTIFICIAL INTELLIGENCE IN EDUCATION

5.1. Risk of Impairing Creative Thinking

One major concern regarding the integration of artificial intelligence (AI) in education is the potential weakening of students' independent and creative thinking skills. Excessive reliance on automated tools may constrain students' problem-solving abilities and foster a "ready-made answers" habit (Selwyn, 2019). Therefore, a balanced integration of AI within instructional processes is essential to maintain and enhance cognitive autonomy.

5.2. Ethical Considerations

The use of AI also raises a number of ethical challenges. These include plagiarism, protection of intellectual property, confidentiality of student data, and transparency of AI-driven decision-making (Holmes et al., 2021). The absence of robust ethical frameworks may generate significant risks in the pedagogical process and negatively impact educational quality.

5.3. Transformation of the Teaching Profession

The integration of AI into teaching practices necessitates a transformation of the professional role of educators. Teachers are required to shift from being sole knowledge transmitters to acting as facilitators and mentors (Luckin et al., 2016). This transition demands both enhanced teacher preparedness and the updating of pedagogical approaches.

5.4. Technological Dependence and Social Inequality

AI implementation is inherently dependent on technological infrastructure and resources. Limited access to AI technologies in under-resourced schools or regions may exacerbate educational inequalities (UNESCO, 2021). Moreover, technological dependence can divert students' and teachers' attention from resolving technical issues, potentially detracting from the primary objectives of the learning process.

6. CREATIVITY AND THE INTERACTION WITH ARTIFICIAL INTELLIGENCE

6.1. Human-Artificial Intelligence Synergy

Research indicates that optimal outcomes are achieved only when human creativity and artificial intelligence (AI) are employed complementarily (Holmes et al., 2021). AI tools assist students in idea generation, data analysis, and exploring alternative solutions, thereby enhancing the potential of human creativity. For instance, in design and engineering courses, students use AI tools to create initial prototypes, which are subsequently refined through human imagination. This approach not only saves time but also facilitates the emergence of more innovative solutions.

6.2. Stimulation of Creative Processes

AI does not merely replace students' creative activity; it also stimulates it. For example, visual and text-generating tools expose students to diverse perspectives, promoting innovative thinking (Popenici & Kerr, 2017). Sawyer emphasizes that in interactive and collaboration-based learning environments, AI tools foster more productive development of creativity (Sawyer, 2012). In music education, AI programs provide students with

alternative composition options, thereby enhancing their compositional and improvisational skills. As Sawyer notes, AI tools in collaborative, interactive settings contribute to more effective creative development (Sawyer, 2012).

6.3. New Dynamics in Teacher-Student Interactions

AI-enhanced learning environments generate novel interaction models between teachers and students. Teachers are no longer solely knowledge transmitters but also facilitators guiding the learning process through AI tools (Luckin et al., 2016). This promotes student autonomy while simultaneously supporting creative thinking.

6.4. Balanced Pedagogical Approaches

To maximize the impact of AI on creative potential, balanced pedagogical strategies are required. Research shows that AI tools positively influence the development of creative skills when used in a supportive role, preserving opportunities for students' self-expression (Selwyn, 2019). For instance, in visual arts courses, students expand their initial sketches with AI assistance, while fundamental composition and artistic decisions remain human-driven. Such an approach leverages technological advantages while safeguarding human participation in the creative process.

7. RESULT

7.1. The Impact of Artificial Intelligence on Creativity in Education: Survey Results and Interpretation

Table 1. Students' use of AI tools and learning experiences.

Question	N (Total)	Average	Standard deviation	Min.	Max.
The degree of use of AI tools in lessons	150	4.2	0.75	2	5
AI tools help to learn	150	4.0	0.82	1	5
Creativity increases when using AI	150	3.8	0.91	1	5
AI offers personalized learning opportunities	150	4.1	0.78	2	5
Strengthening problem-solving skills when using AI	150	3.7	0.88	1	5

Note: Likert scale: 1 – Strongly disagree, 5 – Strongly agree.

The findings in Table 1 indicate that the majority of students hold a positive perception of AI tool utilization, recognizing their contributions to learning enhancement. The mean scores, ranging from 3.7 to 4.2, reflect a high overall level of agreement among respondents. Relatively low standard deviations further suggest a consistent and homogeneous distribution of responses, underscoring the robustness of the observed trends.

Table 2. Students' creative performance and use of artificial intelligence.

Question	N	Average	Standard deviation	Min.	Max.
AI tools help to generate new ideas in projects	150	3.9	0.85	2	5
The use of AI enhances visual/Text-based creative activity	150	4.0	0.79	2	5
Using AI tools develops analytical and innovative thinking skills	150	3.8	0.88	1	5
Collaboration and teamwork become more productive with the use of AI	150	3.6	0.92	1	5
AI tools realistically reflect creative potential	150	3.7	0.87	1	5

Note: Likert scale: 1 – Strongly disagree, 5 – Strongly agree.

The data presented in Table 2 suggests that AI tools effectively enhance students' engagement in creative activities. Observed mean scores ranged from 3.6 to 4.0, indicating that a substantial proportion of students perceive AI as a valuable support in their project-based work. The standard deviations, ranging between 0.79 and 0.92, reflect a relatively high degree of response consistency, underscoring the reliability of the observed trends in students' evaluations.

8. DISCUSSION

8.1. Theoretical Perspective

The study findings indicate that the use of artificial intelligence (AI) in education exerts a significant impact on students' creativity and learning activities. The literature review and theoretical frameworks suggest that AI technologies function not merely as knowledge transmitters but also as instruments that stimulate creative and analytical thinking (Holmes et al., 2021; Popenici & Kerr, 2017). Survey results from this study revealed that students perceive an enhancement in their creativity and a more personalized learning experience when utilizing AI tools. Mean scores ranging from 3.7 to 4.2 corroborate these theoretical claims, demonstrating that AI has evolved from a purely technological instrument into an integrative component of the pedagogical process.

Nevertheless, theoretical perspectives also highlight potential challenges: AI usage may negatively affect students' independent thinking, while ethical and social concerns emerge (Holmes et al., 2021; Selwyn, 2019). Correspondingly, participants in this study reported instances of overreliance on AI tools, which in some cases diminished their initiative in problem-solving. These findings align with existing theoretical insights, underscoring the importance of employing AI primarily as a supportive rather than a substitutive tool within educational contexts.

8.2. Practical Perspective

The survey results yield several practically significant findings:

1. Stimulation of Creative Activity: Between 78% and 82% of students reported that AI tools assist in generating novel ideas within projects. This indicates that integrating AI technologies into practical lessons and project-based learning can be highly effective in fostering creativity.
2. Opportunities for Personalized Learning: 81% of students noted improvements in personalized learning facilitated by AI. This is particularly relevant for enhancing educational quality for students with diverse skill levels.
3. Promotion of collaboration and group work: 72% of students indicated that AI enhances collaboration in group projects, thereby contributing to more productive outcomes.
4. Balancing Creativity and Technology: The survey also revealed that students prefer to maintain their own creative decisions while leveraging technological support. This finding underscores the importance of pedagogical planning that balances AI assistance with the preservation of students' creative autonomy.

8.3. Results of the Discussion

The discussion indicates that artificial intelligence (AI) exerts a positive influence on the development of creativity in education from both theoretical and practical perspectives; however, this impact is achievable only through a balanced pedagogical approach. The study's findings demonstrate that AI tools support students in idea generation, active engagement in the learning process, and the development of collaborative skills. Concurrently, the role of teachers is redefined as facilitators and mentors, thereby preserving students' autonomy and creative thinking.

Consequently, the integration of theoretical and practical results underscores that AI serves as an effective instrument for enhancing creative potential in education, provided that appropriate ethical and pedagogical frameworks are in place.

9. CONCLUSIONS

This article provides a comprehensive, multidimensional analysis of the interplay between artificial intelligence (AI) and creativity in education. Research indicates that AI technologies enrich the pedagogical process by offering personalized learning, adaptive assessment, and inclusive educational opportunities. Concurrently, AI facilitates students' creative activities, supporting idea generation and the implementation of innovative projects.

At the same time, the deployment of AI introduces a number of challenges. Excessive reliance on automated tools may undermine students' independent and creative thinking capacities. Additionally, ethical and social concerns, the evolving role of educators, and technological dependency present significant risks. In this regard, the harmonious integration of AI and creativity necessitates a balanced approach to both pedagogical and technological planning.

The interaction between AI and creativity in education offers substantial opportunities as well as critical challenges. Integrating AI within well-defined pedagogical and ethical frameworks enhances the learning experience, amplifies students' creative potential, and fosters the development of innovative educational environments. This approach delineates key directions for future educational policy, teacher preparation, and the design of innovative pedagogical models.

10. RECOMMENDATIONS

1. **Balanced Pedagogical Integration:** Artificial intelligence tools should be utilized solely as supportive instruments within pedagogical frameworks, ensuring the preservation and cultivation of students' autonomous reasoning and creative capacities.
2. **Development of comprehensive ethical frameworks:** Academic institutions are required to formulate rigorous guidelines that protect data confidentiality, uphold intellectual property rights, and guarantee transparency in the deployment of AI technologies.
3. **Professional Development and Teacher Competence:** Educators must acquire advanced competencies to seamlessly integrate AI into instructional practice, complemented by targeted professional training to assume the roles of facilitators and mentors effectively.
4. **Equitable Access and Inclusive Learning Environments:** AI applications should be universally accessible, with adaptive learning tools and resources tailored to support students with diverse abilities and educational needs.
5. **Directions for Future Empirical Research:** It is imperative to conduct extensive empirical investigations into AI's influence on creative capacities, with customized methodological approaches for different educational levels and disciplinary domains.

Funding: This study received no specific financial support.

Institutional Review Board Statement: The study protocol was approved by the Institutional Review Board of Azerbaijan State Pedagogical University, Azerbaijan, under protocol number 5, dated 24 February 2025.

Transparency: The author states that the manuscript is honest, truthful, and transparent, that no key aspects of the investigation have been omitted, and that any differences from the study as planned have been clarified. This study followed all writing ethics.

Competing Interests: The author declares that there are no conflicts of interests regarding the publication of this paper.

REFERENCES

Craft, A. (2011). *Creativity and education futures: Learning in a digital age*. Stoke-on-Trent, UK: Trentham Books.

Florida, R. (2002). *The rise of the creative class: And how it's transforming work, leisure, community and everyday life*. New York: Basic Books.

Guilford, J. P. (1950). Creativity. *American Psychologist*, 5(9), 444–454. <https://doi.org/10.1037/h0063487>

Holmes, W., Bialik, M., & Fadel, C. (2021). *Artificial intelligence in education: Promises and implications for teaching and learning*. Boston, MA: Center for Curriculum Redesign.

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. *Educational Technology Research and Development*, 68(4), 1961–1990. <https://doi.org/10.1007/s11423-020-09788-z>

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. London, UK: Pearson.

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. *Research and Practice in Technology Enhanced Learning*, 12(22), 1–18. <https://doi.org/10.1186/s41039-017-0062-8>

Sawyer, R. K. (2012). *Explaining creativity: The science of human innovation* (2nd ed.). New York: Oxford University Press.

Selwyn, N. (2019). *Should robots replace teachers? AI and the future of education*. Cambridge, UK: Polity Press.

UNESCO. (2021). *AI and education: Guidance for policy-makers*. Paris, France: UNESCO Publishing.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 1–27. <https://doi.org/10.1186/s41239-019-0171-0>

Views and opinions expressed in this article are the views and opinions of the author(s), International Journal of Education and Practice shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/ arising out of the use of the content.