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ABSTRACT

Martinez, et al. [[1] analysed monthly numbers of dengue cases as reported in Campinas, southeast Brazil
Sfrom 1998 to 2008, by SARIMA methods. Assuming X is the original series, they analysed the logarithm of
X + 1. The models they proposed and compared are of orders (2,1,2)x(1,1,1)w, (2,1,1)x(1,1,1)s,
(1,1,2)x(1,1,1):s, (1,1,1)2(1,1,1):, (2,1,3)2(1,1,1):s, and (1,1,3)x(1,1,1):=. Using the R software, they chose
the SARIMA(2,1,2)x(1,1,1):: model as the best on the basis of Akaike information criterion, AIC. The result
in this work is different: the SARIMA(2,1,1)x(1,1,1):» model is herein adjudged as the best on the same
minimum AIC grounds.
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Contribution/ Originality

This paper’s primary contribution is that monthly recorded dengue numbers in Campinas,
South east Brazil, follow a SARIMA (2, 1, 1) x (1, 1, 1);2 model. It was previously believed that a
SARIMA (2, 1, 2)x(1, 1, 1);2 model was the better model. The Eviews software was used to do the

analysis. Residual analysis of the chosen model shows that it is very adequate.

1. INTRODUCTION

Martinez, et al. [17] analyzed monthly recorded numbers of dengue in Campinas in Southeast
Brazil using Box-Jenkins methods. They analyzed the logarithms of the increment of the raw data
by 1. The approach they adopted was the seasonal autoregressive integrated moving average
(SARIMA) approach. This was sequel to an observation of a seasonal tendency in the time series,
the dengue numbers tending to increase during the rainy seasons and reduce during the dry
seasons.

They considered six SARIMA models of orders: (2,1,2)x(1,1,1)12, (2,1,1)x(1,1,1)ig,
(1,1,2)x(1,1,1)1e, (1,1,1)x(1,1,1)10, (2,1,8)x(1,1,1)1o and (1,1,8)x(1,1,1);c and adjudged the
(2,1,2)x(1,1,1);2 model as the most adequate on the basis of the minimum value of Akaike
information criterion, AIC. It is noteworthy that they used the R software.

However, using the Eviews software a different conclusion is reached in this work. The

motivation of this paper is therefore to highlight the fact that a different model is chosen as the
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best amongst the same set of selected models. It is surprising where the difference could have

arisen.

2. LITERATURE REVIEW

Of recent there has been a growing interest in SARIMA modelling. Many real life time series
have seasonal natures. Box and Jenkins [27] proposed that such series could be modelled by
SARIMA models. A few of seasonal time series that have been modelled by SARIMA techniques
are rainfall [37, inflation 4], microwave transmission [ 57, temperature [ 6, electricity [7] and
foreign exchange rate [87. It has been demonstrated that for intrinsically seasonal series

SARIMA models outdo the ordinary autoregressive integrated moving average (ARIMA) models

[8].

3. MATERIALS AND METHODS

The data for this work as published in Martinez, et al. [17] are the reported monthly numbers
of dengue from January 1998 to December 2009. As in [17, only the 132 numbers from 1998 to
2008 are analysed. The 2009 values were used to validate the fitted model in [17.

3.1. Sarima Models
A stationary time series {X;} is said to follow an autoregressive moving average model of
orders p and q denoted by ARMA(p,q) if it satisfies the following difference equation
Xi- 00X - 0eXio = oo - 0pXiep = & + Pr&er + Pobio + ... + PoEiyg (1)

where {€} is a white noise process and the o’s and the §’s are constants such that the model

is both stationary and invertible. The model could be written as

A(L)X, = B(L)e: (2)

where A(L) = 1 - auL - a.L? - ... - oL and B(L) = 1 + B,L + B.L? + ... + B4L9 and L is the
backshift operator defined by B¥X = X For stationarity and invertibility it is well known that
the zeros of A(L) and B(L) must be outside the unit circle respectively.

Most real-life time series are non-stationary. For such a series, Box and Jenkins [27] proposed
that differencing up to an appropriate order could make the series stationary. Supposed is such an
appropriate order. If the d™ difference of {X(}, denoted by {VIX,}, satisfies model (1), then {X} is
said to follow an autoregressive integrated moving average model of orders p, d and ¢, denoted by
ARIMA(p, d, q). Here V is the difference operator defined by V =1 - L.

If {Xi} is seasonal of period s, Box and Jenkins [27] proposed that it may be modelled by

AL)YD(L)VIV L X, = B(L)O(Ls)e, (3)
where ®(L) and ©(L) are polynomials in L with coefticients such that the entire model (3) is

both stationary and invertible. The seasonal difference operator Vi is defined by Vi, = 1 — Ls.

Suppose the degrees of the polynomials ®(L) and ®(L) are P and Q respectively, the model (3) is
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called a seasonal autoregressive integrated moving average model or orders p, d, q, P, D, Q and s denoted
by SARIMA(p, d, q)x( P, D, Q)s.

3.2. Sarima Model Estimation

Model estimation invariably begins with order determination. The orders p, d, q, P, D, Q and
s must first of all be estimated. The seasonal period s is often obvious from experience or
observation. Where the time-plot fails to clearly indicate the period, the autocorrelation function
(ACF) could better do so by a significant spike at the seasonal lag. The ACF of a seasonal series
of period s should exhibit oscillatory movements of the same period such that at integral multiple
lags of s the correlations be positive and midway between such lags the correlations be negative.
The autoregressive orders p and P may be suggestive by the non-seasonal and the seasonal cut-
off lags of the partial autocorrelation function (PACF) respectively. Similarly the moving average
orders q and Q may be determined respectively by the non-seasonal and the seasonal cut-off lags
of the ACF.

Often it is enough to put d = D = 1. Before and after differencing, stationarity is tested by the
Augmented Dickey Fuller (ADF) test.

After order determination estimation of the parameters may be done by a non-linear
optimization technique because of the presence of items of the white noise process in the model. In
this work the Eviews software shall be used. It employs the least error sum of squares criterion
for model estimation.

A fitted model must be subjected to some residual analysis for confirmation of its goodness-
of-fit to the data. The residuals of an adequate model are expected to be uncorrelated as well as

follow a Gausian distribution of zero mean.

4. RESULTS AND DISCUSSION

The analyzed series is given by {Z} where Z = log(X; + 1) just as in Martinez, et al. [17].
The time-plot of Z, the realization of {Z:} that is actually analyzed, in Figure 1 shows some
periodic movements of considerable regularity. However with a statistic value of -4.2 and the 1%,
5% and 10% critical values of -3.5, -2.9 and -2.6 respectively, the ADF test adjudges Z as
stationary. The correlogram of Z in Figure 2 shows the ACF of a seasonal series of period 12. Z
therefore cannot be stationary since the ACF exhibits oscillatory movements of period 12.

A seasonal (i.e. 12-month) differencing of Z produces the series herein called SDZ. The time-
plot of SDZ in Figure 8 shows two peaks, one between 1999 to 2003 and the other between 2005
to 2007. Between the peaks is a trough. With a statistic value of -2.5 and the same critical values
as mentioned above, the ADF test adjudges SDF as non-stationary.

A non-seasonal differencing of SDZ yields the series DSDZ which, with a statistic value of -
5.6 and the same respective critical values as mentioned above, is adjudged as stationary. Its time-
plot is shown in Figure 4. The correlogram of DSDZ of Figure 5 supports the stationarity
hypothesis. With a negative significant spike at lag 12 in the ACF, there is indication of a 12-
monthly seasonality as expected and the involvement of a seasonal moving average component of

order 1. The comparable spikes at lags 11 and 13 suggests a (0, 1, 1)x(0, 1, 1);2 component.
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Similarly the spikes at lags 11, 12 and 13 in the PACF suggests a (1, 1, 0) x (1, 1, O)e
component. Combining these components, a (1, 1, 1)x(1, 1, 1);2 model is suggestive. No wonder
that this (1, 1, 1)x(1, 1, 1)1 model is one of the chosen models. Though not the best of them in the
AIC sense, it is still adequate in terms of uncorrelated and normally distributed residuals.

Martinez, et al. [17] compared the SARIMA models (p, 1, q)x(1, 1, 1)1z with (p,q) equal to
(2,2), (2,1), (1,2), (1,1), (2,3) and (1,3). They chose the first model (2, 1, 2)x(1, 1, 1);2 on the
grounds of minimum AIC. However the result of this work is different: the second model (2, 1,
1)x(1, 1, 1)12 is the best (See Tables 1, 2 and 3).

Table 2 and table 3 show details of the estimation of the two competing models: (2, 1, 2)x(1,
1, 1) and (2, 1, 1)x(1, 1, 1) respectively. Figure 6 shows that the residuals of the chosen model (2,
1, 1)x(1, 1, 1), are uncorrelated and Figure 7 shows that they follow a normal distribution with

Zero mean.

5. CONCLUSION

It is concluded that the dengue numbers follow a SARIMA (2, 1, 1)x(1, 1, 1);2 and not a
SARIMA(2, 1, 2)x(1, 1, 1) model amongst the six chosen models as earlier believed. This model
has been shown to be the most adequate of all the proposed models. It is not certain where the
difference could have emanated from. It is therefore recommended that further research be done

to ascertain the source of the difference in the results obtained herein and in Martinez, et al. [17.
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— FIGURE 1: Z
Figure-2. CORRELOGRAM OF Z

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.865 0.865 100.94 0.000

2 0631 -0.462 15512 0.000

3 03561 -0.188 172.98 0.000

4 0121 0.003 175.01 0.000

5 -0.046 0.051 175.31 0.000

6 -0.121 0.084 A177.37 0.000

7 -0.086 0.200 17843 0.000

5 0038 0173 178.63 0.000

9 0209 0121 184.90 0.000

10 0.368 0.048 204.50 0.000

11 0489 0124 23943 0.000

12 0505 -0170 276.98 0.000

13 0405 -0.166 301.40 0.000

14 0198 -0.241 307.25 0.000

15 -0.046 -0.074 307.57 0.000

16 -0.264 -0.080 318.19 0.000

17 -0.414 -0.076 344 .61 0.000

18 -0.478 -0.108 380.08 0.000

19 -0.442 -0.018 41067 0.000

20 -0.335 -0.111 428.41 0.000

21 -0.187 -0.005 433.96 0.000

22 -0.033 0.030 43413 0.000

23 0080 0038 43516 0.000

24 0115 -0.043 437.31 0.000

25 0052 -0.024 437.77 0.000

26 -0.082 0.01F7 438.87 0.000

27 -0.245 0.032 448.98 0.000

28 -0.402 -0.081 476.40 0.000

29 -0.523 -0.107 523.32 0.000

30 -0.580 -0.125 581.68 0.000

31 -0.552 -0.027 63507 0.000

32 -0.449 -0.059 6T0.74 0.000

33 -0.299 -0.016 686.70 0.000

34 -0.148 -0.091 690.63 0.000

35 -0.009 0.079 690.64 0.000

36 0.083 0.084 691.91 0.000
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— FIGURE 4: DSDZ
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Figure-5. CORRELOGRAM OF DSDZ
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Table-1. Comparison of the Proposed Models

Model Status AIC value S. E. of regression
(2,1,2)x(1,1,1)12 Invertible 2.172557 0.685329
(2,1,1)x(1,1,1)12 Invertible 2.165231 0.688742
(1,1,2)x(1,1,1)12 Invertible 2.290075 0.788347
(1,1,1)x(1,1,1) 10 Invertible 2.231494 0.718449
(2,1,8)x(1,1,1)12 Noninvertible 2.890756 0.757929
(1,1,3)x(1,1,1) 19 Invertible 2.407217 0.770956
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Table-2. Estimation of the Sarima (2, 1,2)X(1, 1, 1)12 Model

Dependent Variable: DSDZ

Method: Least Squares

Date: 03/24/14 Time: 17:52

Sample(adjusted): 2000:04 2008:12

Included observations: 105 after adjusting endpoints
Convergence achieved after 64 iterations

Backcast: 1999:02 2000:03

Wariable Coeficient  Std. Error  t-Statistic Praob.
AR(1) 0.666614 0.125409 5315520 0.0000
AR(2) -0.171081 0175957 -0.972289 0.3334
AR(12) -0.160365 0.099378 -1.613685 0.1099
AR(13) 0.333005 0112307 2.965133 0.0038
AR(14) -0.348619 0100182  -3.479869 0.0008
MAT) -0.595921 0117437 507437 0.0000
MA2) -0.018409 01808392  -0.101770 0.9192
MA12) -0.797828 0.081125 -9.834548 0.0000
MA13) 0.375634 0127443 2947332 0.0040
MA14) 0.092484 0.169085 0.546964 0.5857
R-squared 0537243 Mean dependent var 4 B5E-05
Adjusted R-squared 0493403 5.0 dependent var 0962870
S E. of regression 0685329 Akaike info criterion 2172557
Sum squared resid 44 61921 Schwarz criterion 2425315
Log likelihood -104.0593  F-statistic 12.25459
Durbin-\Watson stat 2158195  Prob(F-statistic) 0000000
Inverted AR Roots A1-191 91+190 TR+ A3 75 -53i
A8 -TTi 48+7Ti 1 -.92i 114,92
-31-881 -31+388i - 69+ 63 -69 -.63i
-91-231 -91+23i
Inverted MA Roots R .B6+.49i 86 - 49 65
bB0+.851 50 -85i 01 -98i 01+.98i
-18 - 48 -85 - 48+ 85i - B4+ 45
-84 - 49i -97
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Table-3. Estimation of the Sarima (2, 1, 1)X(1, 1, 1);2 Model

Dependent Wariable: DSDZ

Method: Least Squares

Date: 03/24/14 Time: 17:58

Sample(adjusted): 2000:04 2008:12

Included observations: 105 after adjusting endpoints
Convergence achieved after 60 iterations

Backcast: 1999:03 2000:03

Wariable Coeficient  Std. Error  t-Statistic Prob.
AR(1) 0445020 0118790  3.746259  0.0003
AR(2) -0149584  0.085114 1757456  0.0820
AR(12) -0146818  0.090093 -1.629635  0.1064
AR13) 0160347 0098164 1633463  0.1056
AR14) 0201312 0083071 -2260118  0.0261
MA(T) 0348015 0114328 -3.044005  0.0030
MA[12) -0.868345 0037438 -23.193%4  0.0000
MA[13) 0312118 0104962 2973628  0.0037
R-squared 0522783 Mean dependent var 4 h5E-05
Adjusted R-squared 0488345 5.0 dependent var 0.962870
S.E. of regression 0.688742 Akaike info criterion 2165231
Sum squared resid 46.01345 Schwarz criterion 2367438
Log likelihood -1056.6746 F-statistic 1618026
Durbin-WWatson stat 2170861 Prob(F-statistic) 0.000000
Inverted AR Roots BE+ 21 B3-21 B9+ BE B9 - B
A1-TE 0 A1+.T75i A0 -.87i A0+.87i

-30 -85 -30+.85i - BT+ .61 - B7 - 61i

- 89+.227  -89-22i

Inverted MA Roots 99 .85 -.49i BA+ 45 49 - 86i
A9+ 86 .36 -.00 -.9%i - 00+.99i

-49+ 861 -49-86i -.86 - 49 - 86+ 49

-.99
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