

100

† Corresponding author
© 2016 Conscientia Beam. All Rights Reserved.

IMPROVING CLOUD SYSTEM PERFORMANCES BY ADOPTING NVRAM-BASED
STORAGE SYSTEMS

Jisun Kim1 --- Yunjoo Park2 --- Sunhwa A. Nam3 --- Hyunkyoung Choi4 --- KyungWoon Cho5 --- Hyokyung
Bahn6†
1,2,3,4,5,6Ewha University, Seoul, Republic of Korea

ABSTRACT

NVRAM is being considered as an additional memory/storage component of future cloud computing systems. This paper

investigates how much performance improvement can be obtained if we add NVRAM as the memory/storage media of cloud

systems. As NVRAM is put on DDR slots, it is byte-accessible and hence can be used as a memory medium like DRAM. It can

also be utilized as swap or journal devices if we use it as a block I/O device. We first consider NVRAM as a storage cache, and

then, we measure the performance of systems that additionally use NVRAM as memory, swap, and journal devices. We use two

workloads, I/O and memory intensive workloads. Our experiments show that using NVRAM as a journal device performs the

best in I/O-intensive workload as it performs journaling I/O on NVRAM instead of slow storage. Using NVRAM as memory

or swap devices does not show good results in I/O-intensive workload. However, in case of memory-intensive workload,

NVRAM memory significantly improves the performance, and NVRAM swap also gains a certain level of improvement. We

expect that our experiments will be helpful in the design of NVRAM-based cloud systems for memory or I/O intensive workload

situations.

Keywords: Cloud system, NVRAM, Storage, Journaling, Swap.

Received: 8 November 2016/ Revised: 15 December 2016/ Accepted: 19 December 2016/ Published: 23 December 2016

Contribution/ Originality

 The paper’s primary contribution is finding the NVRAM’s effectiveness on the performance of future cloud

systems. Specifically, we show the effectiveness of NVRAM if it is used as storage cache, main memory, journal

device, or swap device in the memory hierarchy of cloud computing systems.

1. INTRODUCTION

Due to the recent advances in semiconductor technologies, byte-accessible NVRAMs (nonvolatile RAMs) such

as MRAM (magnetic RAM), PRAM (phasechange RAM), and FeRAM (ferro electro RAM) are emerging rapidly

[1-3]. NVRAM is being considered as an additional memory/storage component of future cloud computing

systems. This paper investigates how much performance improvement can be obtained if we add NVRAM as the

memory/storage media of cloud systems. As NVRAM is put on DDR slots, it is byte-accessible and hence can be

utilized as a memory medium like DRAM. However, if we want to use NVRAM as a swap or a journal device, it

should be recognized as a block I/O device. Thus, we develop an NVRAM device driver based on the existing

Ramdisk driver.

We first consider NVRAM as an additional storage cache and show how much performance improvement can

be obtained if we adopt NVRAM cache. Then, we consider NVRAM as a fast storage medium as well as main

International Journal of Natural Sciences Research
2016 Vol. 4, No. 6, pp. 100-106
ISSN(e): 2311-4746
ISSN(p): 2311-7435
DOI: 10.18488/journal.63/2016.4.6/63.6.100.106
© 2016 Conscientia Beam. All Rights Reserved.

http://crossmark.crossref.org/dialog/?doi=10.18488/journal.63/2016.4.6/63.6.100.106

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

101

© 2016 Conscientia Beam. All Rights Reserved.

memory medium and measure the performance of the original system that uses DRAM memory and HDD storage,

and new systems that additionally use NVRAM as memory, swap, and journal devices. We use two workloads,

IOzone and a memory intensive workload. Our experimental results show that using NVRAM as a journal device

performs the best in case of IOzone as it performs journaling I/O on NVRAM instead of slow storage. Using

NVRAM as a memory or a swap device does not exhibit such good results as they have the effect of extending

memory capacity but IOzone is an I/O-intensive workload. Using NVRAM as memory performs slightly better

than that of a swap due to the buffering effect of I/O. However, in case of memory-intensive workload, NVRAM

memory significantly improves the performance of the system as it extends the effective memory capacity. NVRAM

swap also gains a certain level of improvement. Though the memory size itself is not extended, NVRAM swap

performs well in memory-intensive workloads as it provides a high performance swap device. We expect that our

experiments will be helpful in the design of NVRAM-based cloud systems for memory or I/O intensive workload

situations.

The remainder of the paper is organized as follows. We present the formal definition of NVRAM caching

problems in Section 2. Then, we explain an NVRAM storage cache architecture and present a new cache

replacement algorithm on this architecture in Section 3. Section 4 shows experimental results obtained through

trace-driven simulations to assess the effectiveness of the proposed scheme. Section 5 describes the performance

results when we use NVRAM as additional memory or storage devices. Then, finally we conclude this paper in

Section 6.

2. NVRAM CACHING PROBLEMS

Before mentioning NVRAM caching, we revisit the conventional caching problems. Let us suppose that S is the

size of cache, r the total number of accesses, and h the number of in-cache accesses. Then, the cache management

module needs to cache the currently requested block without exceeding S. In this article, we focus on non-lookahead,

on-demand fetching algorithms. If the number of blocks in the cache exceeds the size of S, the replacement

algorithm selects an eviction victim and removes it from the cache. The eventual goal of the algorithm is to

maximize the number of blocks accessed directly from the cache after all the requests have been processed. The hit

ratio, calculated by h/r, is a well-known performance measure to evaluate the performance of the replacement

algorithm. In the conventional volatile cache structures, Belady’s OPT algorithm is known to be optimal in terms of

the hit ratio [4]. The OPT algorithm removes the block that will be accessed furthest in the future. OPT is not a

practical solution as we cannot know future accesses in real systems. However, OPT provides the upper bound of

performance to the system designers pursuing good practical algorithms.

Now, let us see the NVRAM caching problems. Suppose that both volatile and nonvolatile caches are used

together. We also assume that all writes are performed in nonvolatile cache. Hence, reliability is always guaranteed.

Writes to secondary storage occurs only when a block is removed from the nonvolatile cache. Also, we assume that

all clean blocks reside in volatile cache. This assumption may be released in real systems, but we include it in

theoretical analysis by following previous studies [5].

Suppose that SNV is the size of nonvolatile cache, SV is the size of volatile cache, r is the total number of read

accesses, w is the total number of write accesses, and h is the number of in-cache accesses. Unlike conventional

caching systems, it is known that the hit ratio, i.e., h/(r+w), is not a good performance measure for nonvolatile

caching structure. Instead, the performance measure needs to be changed to the number of storage accesses [5].

The reason is that even a hit may incur storage access operations. For example, if a write access arrives and the

accessed block resides in the volatile cache but not in the nonvolatile cache, it is apparently a cache hit. However,

this incurs a write operation to nonvolatile cache. If there is no available space in the nonvolatile cache, the cache

management module needs to remove a dirty block from the nonvolatile cache, which essentially causes a storage

access operation.

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

102

© 2016 Conscientia Beam. All Rights Reserved.

The problem is then to reduce the total number of storage accesses. For read operations, blocks in both volatile

and nonvolatile caches can be serviced directly. However, for write operations, the system should only use

nonvolatile cache for the reliability reason. Thus, if a write request happens and the requested block does not exist

in the nonvolatile cache, the replacement algorithm needs to make a space in the nonvolatile cache for this request.

If the number of blocks in the nonvolatile cache is larger than SNV, the replacement algorithm selects an eviction

target and removes it, which eventually causes a write operation to storage. However, if a read request happens, a

cache hit from either volatile or nonvolatile cache does not cause storage accesses.

Due to these changed situations, the optimality of the replacement algorithm is also defined differently for

nonvolatile cache structures. An optimal algorithm, that we call NV-MIN, behaves as follows. Note that we do not

provide the formal proof of the optimality, as it can be shown intuitively. If a read miss happens, NV-MIN selects a

replacement block by the following procedures. If there is an empty space in volatile cache or if there is a space of

which the next access is write in volatile cache, NV-MIN stores the new block here. Otherwise, NV-MIN evicts the

block that will be read-accessed furthest in the future among those in volatile cache.

If a write miss occurs in nonvolatile cache, NV-MIN acts as follows. Note that this includes the case that a

write-accessed block already exists in volatile cache but not in nonvolatile cache. If there exists an empty slot in

nonvolatile cache, NV-MIN stores the requested block in this space. (If the block already exists in volatile cache,

NV-MIN evicts it from volatile cache.) Otherwise, NV-MIN removes the block that will be write-accessed furthest

in the future and writes it to the storage. If the evicted block will be read-accessed again in the future, it may be

copied to volatile cache according to the following procedures. If there exists an empty space in volatile cache or if

there is a block whose next request is write in volatile cache, NV-MIN stores the removed block to this space.

Otherwise, NV-MIN compares the two blocks, namely the block that will be read-accessed furthest in the future

among those in volatile cache and the removed block from nonvolatile cache, and replaces the block that will be

read-accessed further in the future.

3. NVRAM CACHING ALGORITHMS

The storage and cache systems we consider are depicted in Fig. 1. Storage systems are composed of the

secondary storage systems and two kinds of caches, namely volatile cache and nonvolatile cache. The secondary

storage system is basically composed of hard disks, but NAND flash memory or other storage media can be adopted.

The volatile cache consists of DRAM, and the nonvolatile cache consists of NVRAM such as PCM, ReRAM, or

STT-MRAM. All writes requests are performed in nonvolatile cache. Thus, all dirty blocks reside in nonvolatile

cache and hence reliability is always guaranteed. Writes to secondary storage occurs only when a removal from

nonvolatile cache happens.

Fig-1. System structure of nonvolatile cache

DRAM

Secondary storage

read

write

DISK

NVRAM

Nonvolatile buffer cache

Volatile buffer cache

replacement

volatile cache

non-volatile cache

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

103

© 2016 Conscientia Beam. All Rights Reserved.

Nonvolatile cache utilizes the read history and the write history of block accesses separately to predict future

accesses precisely. To this end, nonvolatile cache uses two lists in order to maintain the recency history of accesses,

namely the LRR (least recently read) list and the LRW (least recently written) list. Note that blocks in these two

lists are not required to be identical to those blocks in the volatile and the nonvolatile caches, respectively. This

separated management of metadata and actual data allows more efficient management of volatile and nonvolatile

cache spaces. For example, if a block is recently read and also written, the metadata of the block can exist in both

LRR and LRW lists, but actual data is only maintained in the nonvolatile cache. Hence, some blocks in the LRR list

may not exist in the volatile cache. This enables volatile cache to preserve more blocks, leading to more read-hits.

Nevertheless, we maintain the read history of the block in the LRR list as the block may return to the volatile cache

if it is evicted from the nonvolatile cache.

Fig-2. Data structures used in the nonvolatile caching algorithm.

4. PERFORMANCE EVALUATION OF NVRAM CACHING

We conducted trace-driven simulations to evaluate the effectiveness of cache replacement algorithms with

respect to the total number of storage accesses. We used traces collected by Roselli, et al. [6] from the Hewlett-

Packard series 700 workstations running HP-UX. These traces are classified as three categories, namely INS

(instructional workload), RES (research workload), and WEB (Web server workload). For a comparison purpose,

we designed and implemented NVLRU, which is a modified version of the conventional LRU algorithm. NVLRU

holds dirty blocks in NVRAM, preserving file system consistency without periodical flush. Whenever it needs to

store a new dirty block but there is no free space in NVRAM, it chooses and removes the least recently used dirty

block from NVRAM.

Fig. 3 shows the experimental results of our NVRAM block management (NBM) algorithm with respect to the

total number of storage access operations normalized by NVLRU. NBM performs better than NVLRU specially

when NVRAM load is high. This is due to the major drawback of the NVLRU algorithm. NVLRU maintains dirty

blocks that are recently read but rarely written in NVRAM as it maintains an LRU list based on not only write

histories but also read histories for dirty blocks in NVRAM. In contrast, NBM recognizes dirty but rarely written

blocks efficiently using an LRW list which keeps track of write histories only.

Furthermore, NBM also decreases total storage access counts when the volatile cache space is sufficiently large.

As explained earlier, for every NVRAM replacement victim, NBM decides to move the block from nonvolatile cache

to volatile cache if it is recently read. This helps the system cache to hold all the recently read blocks while

consuming less NVRAM space. However, if volatile cache is under heavier memory pressure than nonvolatile cache,

moving a block from nonvolatile to volatile caches may cause worse read hit ratio. NBM exhibits little performance

Nonvolatile
buffer cache

Volatile
buffer cache

SNV SV

Buffer
cache area

Metadata
history list

Least-Recently-
Written (LRW) list

Least-Recently-
Read (LRR) list

Write
referenced

Read referenced

head of the list (LRU position)

tail of the list (MRU position)

volatile cachenonvolatile cache

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

104

© 2016 Conscientia Beam. All Rights Reserved.

improvement for workloads that rarely reads from dirty blocks. For such workloads, using LRU or LRW for

NVRAM blocks makes no difference. Hence, NBM and NVLRU work similarly. This can be seen in Fig. 3 (c).

Fig-3. Performance of NBM with respect to total storage accesses normalized by NVLRU varying volatile and nonvolatile cache sizes.

5. USING NVRAM AS MEMORY/STORAGE DEVICES

In this section, we perform measurement studies to investigate how much performance gain can be obtained if

we add NVRAM as a memory device or a storage device, specially focusing on a swap or a journal device. Our

experiments are performed on Linux kernel 3.16.0 and Ext4. As commercially available NVRAM hardware is

limited, we emulate it by making use of DRAM on DIMM slots with appropriate timing delays. As we want to use

NVRAM as a swap or a journal device, it should be recognized as a block I/O device. Thus, we develop an NVRAM

device driver based on the existing Ramdisk driver.

We measure the performance of the original system that uses DRAM only and new systems that additionally

use NVRAM as memory, swap, and journal devices. We use two workloads: IOzone and Memzone for I/O and

memory intensive workloads, respectively. IOzone generates a series of I/O accesses whereas Memzone

increasingly allocates a certain range of memory space to the program. Fig. 4(a) shows the measured throughput of

IOzone with four architectures: DRAM only, NVRAM(memory), NVRAM(swap), and NVRAM (journal). As

shown in the figure, NVRAM(journal) performs the best as it performs journaling I/O on NVRAM instead of slow

secondary storage. NVRAM(memory) and NVRAM(swap) do not exhibit such good results as they have the effect

of extending memory capacity but IOzone is an I/O-intensive workload. NVRAM(memory) performs slightly

better than NVRAM(swap) due to the buffering effect of I/O. Fig. 4(b) shows the measured execution time when

Memzone is run. The results show that NVRAM(memory) significantly improves the performance of the system as

it extends the effective memory capacity. NVRAM (swap) also gains a certain level of improvement. Though the

memory size itself is not extended, NVRAM(swap) performs well in memory-intensive workloads as it provides a

high performance swap device. The performance improvement of NVRAM(memory) and NVRAM(swap) over the

original system is 65.6% and 15.2%, respectively.

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

105

© 2016 Conscientia Beam. All Rights Reserved.

 (a) IOzone results (b) Memzone results

Fig-4. Performance measurement using NVRAM as additional memory, swap, or journal devices.

6. CONCLUSIONS

This paper investigated how much performance gain can be obtained if we add NVRAM as the

memory/storage media of cloud systems. We first considered NVRAM as an additional cache and showed how

much performance gain can be obtained if we use NVRAM cache. Then, we considered NVRAM as a fast storage

medium as well as main memory medium and measured the performance of the original system that uses DRAM

memory and HDD storage, and new systems that additionally use NVRAM as memory, swap, and journal devices.

We used two workloads, IOzone and a memory intensive workload. Our experimental results showed that using

NVRAM as a journal device performs the best in case of IOzone as it performs journaling I/O on NVRAM instead

of slow storage. Using NVRAM as a memory or a swap device did not exhibit such good results as they have the

effect of extending memory capacity but IOzone is an I/O-intensive workload. However, in case of memory-

intensive workload, The results showed that NVRAM memory significantly improves the performance of the

system as it extends the effective memory capacity. NVRAM swap also gained a certain level of improvement. We

expect that our preliminary experiments will be helpful in the design of NVRAM-based cloud systems for memory

or I/O intensive workload situations.

Funding: This work was supported by the ICT R&D program of MSIP/IITP (R-20160904-004151, Research on Autoscaling
and Storage for High Performance Computing on Hybrid Cloud) and also by the Basic Science Research program through the
National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4015750).

Competing Interests: The authors declare that they have no competing interests.

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

REFERENCES

[1] E. Lee, J. Jang, T. Kim, and H. Bahn, "On-demand snapshot: An efficient versioning file system for phase-change

memory," IEEE Transactions on Knowledge and Data Engineering, vol. 25, pp. 2841-2853, 2013.

[2] E. Lee, S. Yoo, and H. Bahn, "Design and implementation of a journaling file system for phase-change memory," IEEE

Transactions on Computers, vol. 64, pp. 1349-1360, 2015.

[3] E. Lee and H. Bahn, "Caching strategies for high performance storage media," ACM Transactions on Storage, vol. 10,

pp.1-22, 2014.

[4] L. Belady, "A study of replacement of algorithms for a virtual storage computer," IBM Systems Journal, vol. 5, pp. 78–

101, 1996.

International Journal of Natural Sciences Research, 2016, 4(6): 100-106

106

© 2016 Conscientia Beam. All Rights Reserved.

[5] K. Lee, I. Doh, J. Choi, D. Lee, and S. H. Noh, "Write-aware buffer cache management scheme for nonvolatile RAM,"

presented at the IASTED International Conference: Advances in Computer Science and Technology, 2007.

[6] D. Roselli, J. R. Lorch, and T. E. Anderson, "A comparison of file system workloads," presented at the USENIX

Annual Technical Conference, 2000.

Views and opinions expressed in this article are the views and opinions of the author(s), International Journal of Natural Sciences Research shall not be
responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

