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Soil fertility management of smallholder farms in the humid tropics is a major issue as a 
result of inherently low fertility with nitrogen being the most limiting plant nutrient. 
Use of grain legume fallows could improve soil quality through nitrogen fixation and 
ensure food and nutritional security in developing countries. This field trial was laid 
out in a Randomized Complete Block Design (RCBD) to evaluate the short-term 
benefits of grain legume fallows (common bean, groundnut, cowpea, and soybean) on 
soil fertility improvement and income generation in relation to a natural weed fallow 
system. The results showed that total soil nitrogen content ranged from 0.19–0.24%, 
and differed (P < 0.001) significantly with the highest in common bean plots as 
compared to the others. The soil organic carbon (SOC) content was highest in cowpea 
plots (3.36 %) and lowest in the natural weed fallow (2.77 %).  However, the SOC were 
not significantly different among the fallow systems but were higher than the SOC of 
the soil before sowing (2.41 %). Grain yield ranged from 1.0–1.9 t/ha and differed (P < 
0.001) significantly. The highest profitability of integrating grain legumes in farming 
systems was recorded in the groundnut fallow, followed by soybean, and bean. Cowpea 
generated a negative return, while the natural fallow system had no effect. Integrating 
grain legumes fallow into agricultural systems in the humid tropics enhance the value 
of the fallow lands and may serve as viable short-term economic incentives for 
smallholder farmers.  
 

Contribution/Originality: This study contributes to the existing literature that reports the benefits of grain 

legumes on soil fertility improvement and also showed that the integration of grain legume fallows into agricultural 

systems in the humid tropics generate income for smallholder farmers and could serve as motivation for their 

adoption. 
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1. INTRODUCTION 

Soil fertility decline in the tropics constitutes one of the major crop production constraints that threaten food 

and nutrition security (Dikand Kadiata and Lumpungu, 2003; Ngosong et al., 2018) with nitrogen (N) as the most 

limiting plant nutrient (Massawe et al., 2016). Managing soil fertility on smallholder farms has become a major 

issue as a result of degradation (Fritzpatrick, 1986). This is attributed to inherently low fertility, which could 

decrease rapidly when natural forest or fallow lands are converted to agricultural systems (Serrao et al., 1979; 

Koutika et al., 2005). In the case of the humid tropics, this rapid decline of soil fertility is due among other factors to 

the low buffering capacity, low activity clay content and small nutrient reserves of most of the soils and their 

vulnerability to erosion and compaction (Koutika et al., 2005). To improve soil fertility and optimize crop 

productivity, farmers often apply different fertilizers (Nottidge et al., 2005; Saha et al., 2008; Hepperly et al., 2009) 

including higher amount of nitrogenous fertilizers (Ngosong et al., 2019). However, fertilizers are expensive and are 

not easily affordable by most farmers in developing countries (Ngwu, 2008). As a result, soil degradation processes 

have intensified with soil nutrient mining as the most common form of soil degradation (Vanlauwe et al., 2015). 

Farmers have however turned to other sustainable alternative soil fertility management strategies such as crop 

rotation, intercropping with legumes, and fallow systems to improve soil quality. 

Traditionally, fields are left fallow for a number of years, so that the natural vegetation can regrow for soil 

fertility to be restored (Vanlauwe et al., 2015). But nowadays, natural fallow is no longer an option due to the 

increasing demand for arable land while the available land area has remained constant (Vanlauwe et al., 2015) 

(Koutika et al., 2005). Cultivation of grain legumes has always been a part of crop rotations or intercropping 

systems as they play an important role in sustainable farming (Reem, 2017). Legumes are considered as "soil 

building" crops as they improve soil quality through their beneficial effects on soil biological, chemical and physical 

properties (Anikwe et al., 2016). Legumes have high litter quality that decompose quickly and accelerate nutrient 

cycling. They fix atmospheric-Nitrogen through symbiosis, increase soil carbon content, and stimulate the 

productivity of the ensuing crops with positive impact on the environment through reduction in the use of N 

fertilizers and Nitrogen losses in agricultural fields (Anikwe et al., 2016; Meena and Lal, 2018). Therefore, legumes, 

either as monocrops or in a cropping sequence, have great potential to enhance soil functions capable of sustaining 

productivity in agricultural systems (Meena and Lal, 2018).  

Grain legumes are also used as an option for improving the nutritional composition of foods in developing 

countries due to growing demands for healthy and nutritious food (Meena et al., 2015). In most of the developing 

countries, grain legumes are the major sources of protein and other essential minerals and amino acids for the poor 

sector of the population (Leterme and Carmenza, 2002). Hence grain legumes have huge ecological benefits as 

nitrogen suppliers to arable soils and their adoption in farming systems is widely recommended, especially for 

smallholder farming systems in Africa. These grain legume fallow systems have other benefits such as provision of 

food and income to smallholder farmers (Muoni et al., 2019). From 2013 - 2016 in the Southwest Region of 

Cameroon, grain yield ranged from 6.926 - 29.907 tons for groundnuts, 9.242 - 10.973 tons for common beans, 

142.1 - 258 tons for soybean and 534.7 - 797 tons for cowpea. Though these figures show a rise in growing of grain 

legumes (especially groundnuts) in the study area, their production remain however low thus justifying the low 

adoption of grain legumes in the farming system as compared to other agro-ecological zones in Cameroon 

(Cameroon annual statistics, 2017 edition).  

This study evaluated short-term benefits of grain legumes on soil fertility improvement and their associated 

economic returns. Therefore, we tested the hypothesis of differential improvement of total soil nitrogen and organic 

carbon contents under short-term grain legume fallows and the related grain yield and income as compared to 

natural weed fallow system.  
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2. MATERIALS AND METHODS 

2.1. Site Location  

This field experiment was conducted from April to September 2018 at the farm of the Institute of Agricultural 

Research for Development (IRAD) located at Ekona (its geographical coordinates are 4º14' 0" north, 9º20' 4" east ), 

in Muyuka subdivision of Fako Division, Southwest Region, Cameroon. Ekona is situated on the Northeastern 

slopes of Mount Cameroon at 450 meters above sea level (Price, 1994) with humid tropical climatic conditions. It 

has two distinct seasons; a long rainy season from mid-March to mid-November and a short four-months dry 

season expanding from mid-November to mid-March. The mean temperature ranges between 23.70ºC in the rainy 

season and 24.40ºC in the dry season, with high annual humidity of 76 - 90% (Etchu et al., 2012) and average annual 

rainfall of 2284 mm. These rich volcanic soils belong to the Ekona series which was formed on older mudflows and 

have a well-developed argillic horizon (FAO-UNDP/ONAREST, 1980; Nanganoa et al., 2019). 

 

2.2. Experimental Setup 

The experimental site (759 m2) was cleared with a cutlass and plots measuring 5 x 4 m each were demarcated in 

a randomized complete block design (RCBD) with  5 treatments (1 natural-weed fallow and 4 different grain 

legume fallow systems) and 4 replications, giving a total of 20 experimental plots. The experimental plots (raised 

beds, 30 cm high) were prepared manually using conventional tillage with hoes. 1 m alleys separated the 

experimental plots and blocks, while 2 m buffer strips surrounded the entire experimental field. The fallow systems 

included natural-weed fallow (control), groundnut (cultivar „JL24‟), common bean (cultivar „DOR-701‟), soybean 

(cultivar „TGX14F‟) and cowpea (cultivar „FEKEM‟). Three seeds of each legume (obtained from the Institute of 

Agricultural Research for Development) were sown per hole on the 30th of April 2018.  Groundnut, common bean, 

and soybean were planted at 40 x 20 cm spacing and cowpea at 75 x 25 cm spacing based on local 

recommendations. The seedlings were later thinned to two plants per stand at two weeks after planting (WAP), 

giving a plant population density of 250,000 plants per ha for groundnut, common bean, and soybean, and a plant 

population density of 106,667 plants per ha for cowpea. Weeds were controlled manually by weeding at 2, 4 and 6 

WAP and each plot was fertilized with 0.1 kg N-P-K (20:10:10) fertilizer (Yara, Cameroon) at 2 WAP. Systemic and 

contact insecticide Paraster 40EC (Active ingredient: 20gr/l imidachlopride + 20gr/l lambdacyhalothrine) was 

applied at the rate of 40 ml in 16L knapsack sprayer at 2, 4, and 6 WAP to control insect pests. The soil moisture 

during the entire experimental period depended on the local rainfall regime. 

 

2.3. Data Collection 

2.3.1. Soil Physicochemical Properties 

After clearing the experimental site in April 2018, pre-planting soil samples were randomly collected in a 

zigzag pattern at 0–20 cm depth with an auger and thoroughly mixed to form a composite sample. The soil was air-

dried and sieved through 2 mm screen to remove stones and plant debris and then analysed as described below. The 

physicochemical properties of the pre-planting soil of the experimental site are presented in Table 1. On the 8th of 

September 2018, post-harvest soil samples were randomly collected (0 – 20 cm depth) from each fallow replicate 

and bulked to form a composite sample, giving a total of 20 composite post experimental soil samples. The soils 

were also air-dried and sieved through 2 mm screen. Soil pH was determined in the ratio of 1:2.5 soil/water 

suspensions using a digital pH meter. Available phosphorus was determined by Bray II method (Van Reeuwijk, 

1992) organic carbon by the Walkley and Black wet digestion method (Kalra and Maynard, 1991) and total 

nitrogen by the Kjeldahl digestion method (Bremner and Mulvaney, 1982). Soil exchangeable bases were 

determined after extraction with 1 N ammonium acetate (NH4OAc) solution at pH 7. Calcium and magnesium were 

analysed with atomic absorption spectrometer (AAS), while sodium and potassium by flame photometer (Rowell, 

1994). Exchangeable acidity was determined by 1N KCl extraction method, and titrated with 0.01 N NaOH using 
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phenolphthalein indicators (Van Reeuwijk, 1992). The Effective Cation Exchange Capacity (ECEC) was determined 

by sum of exchangeable bases and acidity, while particle size distribution was determined by the pipette method and 

the textural class assigned according to the USDA textural triangle (Van Reeuwijk, 1992). 

 

2.3.2. Senescent Leaf Nutrients Analysis 

Senescent leaves were also harvested from each legume fallow replicate on the 8th of September 2018.  At this 

stage of the legume crop maturity, most leaves had fallen and decomposing. The legume leaf samples were oven-

dried at 80 °C and their nutrient (N, P, K, Ca, and Mg) contents analysed after extraction by dry ashing – dilute 

HNO3 method (Jones, 2001) following the elemental procedures described above for soil nutrient analyses. Several 

specimens of major plants in the natural weed fallow including foliage, stem, flowers and roots were taken to the 

laboratory, examined and identified by visible characteristics vis-à-vis photographs and written description of 

similar-looking weeds in the laboratory manual. 

 

2.3.3. Grain Yield 

The plants were harvested in August at physiological maturity when about 85% of the pods had turned brown. 

The entire plants from a net plot area of 1m x 1m in the center row were harvested by uprooting the whole plant. 

The pods were manually separated from the plants, sun-dried for one week, threshed and weighed to obtain the 

yield. 

 

2.3.4. Economic Benefits of Legume Fallow 

Cost-benefit analysis was performed to determine the economic benefit of the grain legume fallow systems in 

relation to natural fallow, and the profitability index was employed to estimate the land value during fallow. Gross 

income was determined in relation to the average local market prices (local currency – FCFA) recorded from two 

towns (Buea and Douala) in Cameroon, and reported in US dollars. The average market price per kg was $1.2 (588 

FCFA) for groundnut, $1.2 (575 FCFA) for bean, $1.1 (550 FCFA) for soybean, and $0.8 (400 FCFA) for cowpea. 

Expenses for all farm related activities (e.g. clearing, weeding, raised beds, planting, thinning, fertilization, pest 

control, harvesting, drying, and shelling) were calculated for each fallow system to determine the total production 

cost. The net income and profitability index (benefit-cost ratio) were calculated as: NI =  and BCR = , 

Where NI = net income, GI = gross income from total sales, PC = total production cost, and BCR = benefit-cost 

ratio with values greater than one (>1) indicating profitability of the fallow system. 

 

2.4. Statistical Analyses 

All data sets were analyzed using the statistical software package STATISTICA 13.2 for Windows (StatSoft, 

2016). One-way analysis of variance (ANOVA) was used to compare the effects of different fallow systems on soil 

physicochemical properties, senescent leaf nutrients, grain yields and economic benefits. Significant data means 

were compared by post hoc Tukey‟s HSD test (P < 0.05). 

 

3. RESULTS AND DISCUSSION 

3.1. Major Plants in the Natural Weed Fallow 

Weeds in this study were defined as all “invading species” that were present in the fallow plot, that were not 

specifically planted (Ngobo et al., 2004). These weeds were identified and grouped into invasive (Alternanthera 

brasiliana, Chromolaena odorata, Sorghum halepense, Macroptilium atropurpureum and Pueraria phaseoloides) and non-

invasive plants (Nutsedges, Phyllanthus spp, Galinsoga parviflora, Desmodium spp.).  Among the weeds, Chromolaena 
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odorata, Macroptilium atropurpureum, Pueraria phaseoloides and Desmodium spp have been reported to possibly improve 

soil nitrogen (Ojeniyi et al., 2012; Franke et al., 2018).   

 

3.2. Effect of Fallow Systems on Soil Physicochemical Properties 

The textural class of the pre-planting soil of the experimental site is clay and was moderately acidic Table 1. 

According to Landon (1991) the soil organic carbon (2.41 %) and total nitrogen (0.18 %) were low, exchangeable 

potassium (0.85 cmol/kg) was high while available phosphorus (62 mg/kg) was very high.  

 
Table-1. Pre-planting soil analysis. 

Soil parameters Value 

Particle size distribution  
Clay % 60.06 
Silt % 29.58 
Sand % 10.37 
Soil texture Clay 
Moist.   (105°c)     % 13.6 
Org. Carb.   % 2.41 
Total N% 0.18 
C/N 12.68 
Av. P (mg/kg) 62 
pH(H20) 1:2.5 5.63 

pH(KCl) 1:2.5 4.93 
Na+ (cmol/kg) 0.19 
K+ (cmol/kg) 0.85 
Mg2+ (cmol/kg) 4.69 
Ca2+ (cmol/kg) 9.01 
Al +H (cmol/Kg) 0.08 
ECEC (cmol/kg) 14.82 
Moist. – Moisture content, Org. Carb. – Organic carbon, Av. P – available phosphorus, ECEC – 
effective cation exchange capacity. 

 

The different fallow systems had varying effects on the soil physicochemical properties. The most notable effect 

was the total nitrogen content that ranged from 0.19–0.24%, and differed (P < 0.001) significantly with the highest 

in common bean fallow system followed by cowpea, groundnuts, soybean and natural weed fallow Figure 1. Grain 

legumes improved soil physicochemical properties by fixing the atmospheric nitrogen converting it from an inert 

form to forms that are available for plants uptake. This biological fixed nitrogen can replace nitrogen fertilization 

wholly or in part (Dwivedi et al., 2015). Although the natural weed fallow system recorded the lowest total soil 

nitrogen, it was not significantly different from the groundnut, soybean and cowpea fallow systems. This might be 

as a result of Chromolaena odorata, Macroptilium atropurpureum, Pueraria phaseoloides and Desmodium spp. in the weed 

fallow plots. Their influence on total soil nitrogen contents had been widely reported (Fageria et al., 2005; Ojeniyi et 

al., 2012; Franke et al., 2018). Muhr et al. (1999) reported that green manure legumes such as Pueraria phaseoloides 

can contribute large quantities of residual biomass and nitrogen (N) to soil and Fening et al. (2009) showed that 

Chromolaena odorata contains appreciable quantities of plant nutrients. Hence, the natural weed fallow system that 

comprises some soil N-improving weeds would be a recommended sustainable soil regeneration option when only 

soil fertility improvement benefits are considered.   
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Figure-1. Effect of five fallow systems (Natural, soybean, groundnut, cowpea, and bean) on total soil nitrogen content (% 
± SD) after nineteen weeks of crop cultivation. Data with different letters are significantly different (P < 0.05). 

 

The soil organic carbon (SOC) content was highest in cowpea (3.36 %) and lowest in the natural weed fallow 

(2.77 %).  However, the SOC were not significantly different among the fallow systems Table 2 but were higher 

than the SOC of the pre-planting soil 2.41 %, Table 1. This can be attributed to the conversion of biomass to 

organic matter, which increased the levels of SOC (Ojeniyi et al., 2012). Legume cultivation has also been associated 

with organic carbon dynamics in the rhizosphere (Hajduk et al., 2015; Bichel et al., 2016). The quantity of organic 

carbon buildup depends on the soil, climatic condition, and species of grain legume (Gogoi et al., 2018) and is 

essential to all soil processes that impact crop production and the environment. The C/N ratio ranged from 12.7–

16.1, and differed (P < 0.05) significantly across fallow systems with the lowest in common bean as compared to the 

other treatments Table 2. The C/N ratios indicate the rate of decomposition of organic matter and these results in 

the mineralization or immobilization of soil nitrogen (Swangjang, 2015). Usually it is accepted that the optimal 

C/N ratio is around 10 while ratio over 30 is considered extremely high and can result in some soil nitrogen 

deficiencies. C/N ratio in cultivated lands commonly ranges from 8 – 15 (Brady and Wail, 2010).  

Though not statistically significant, soil available phosphorus in the groundnut plot was higher (16.12 mg/kg) 

compared to the other fallow systems Table 2. However, available phosphorus in all the post-harvest soils was 

lower compared to soil phosphorus before sowing 62 mg/kg, Table 1. Among many environmental factors 

(temperature, water content, pH and N concentration), biological nitrogen fixation process in legume crops is also 

affected by plant nutritional status such as phosphorus level which controls nodule growth and nitrogenase activity 

(Liu et al., 2011; Sallaku et al., 2016) thus a high use of phosphorus was expected. The other soil parameters did not 

differ significantly across fallow systems. However potassium and calcium was highest in the natural weed fallow 

and magnesium in cowpea Table 2. 

 
Table-2. Effect of five different fallow systems (Natural, soybean, groundnut, cowpea, and common bean) on soil physicochemical properties 
(Mean ± SD) after nineteen weeks of crop cultivation. 

Soil physicochemical 
parameters 

Fallow systems 

Natural Soybean Groundnut Cowpea Common bean 

pH 5.53 ± 0.54a 4.99 ± 0.22a 4.98 ± 0.25a 5.24 ± 0.29a 4.97 ± 0.16a 
Organic carbon (%) 2.77 ± 0.12a 3.04 ± 0.28a 3.27 ± 0.37a 3.36 ± 0.23a 3.08 ± 0.24a 
Carbon/Nitrogen 14.45 ± 0.99a 15.17 ± 1.59a 16.10 ± 1.62a 15.66 ± 1.57a 12.68 ± 0.69b 
Phosphorus (mg/kg) 14.12 ± 5.77a 12.50 ± 1.90a 16.12 ± 2.62a 13.82 ± 2.36a 14.26 ± 2.31a 
Sodium (cmol/kg) 0.21 ± 0.00a 0.21 ± 0.01ab 0.20 ± 0.01ab 0.20 ± 0.01ab 0.18 ± 0.02b 
Potassium (cmol/kg) 0.94 ± 0.04a 0.69 ± 0.24a 0.77 ± 0.14a 0.75 ± 0.22a 0.70 ± 0.05a 
Calcium (cmol/kg) 9.99 ± 0.06a 9.52 ± 0.99a 9.50 ± 0.79a 9.61 ± 0.64a 8.99 ± 1.18a 
Magnessium 
(cmol/kg) 

3.40 ± 0.08a 3.38 ± 0.23a 3.28 ± 0.11a 3.51 ± 0.33a 3.28 ± 0.26a 

Acidity (cmol/kg) 0.06 ± 0.02a 0.05 ± 0.01a 0.05 ± 0.01a 0.06 ± 0.01a 0.07 ± 0.02a 
ECEC (cmol/kg) 14.60 ± 0.17a 13.85 ± 1.28a 13.79 ± 0.90a 14.12 ± 0.36a 13.20 ± 1.42a 

Values within columns with different letters are significantly different (P < 0.05). 
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3.3. Nutrient Accumulation in Senescent Leaf Biomass 

The release of nutrients, from litters and crop residues, is an important potential source of nutrients for 

subsequent crops (Blair and Boland, 1978; McLaughlin et al., 1988; Nanganoa and Njukeng, 2018). So the nutrient 

contents of the senescent leaves of different grain legume fallow systems were studied. The results showed that leaf 

nitrogen ranged from 1.5–2.6 % and differed (P < 0.01) significantly with the highest in groundnut, followed by 

cowpea, soybean, and common bean Figure 2. Flint and Roberts (1988) and Clark et al. (1998) also showed that the 

amount of nitrogen in legume crops varies among species. Leaf phosphorus varied from 0.25–0.41 % and differed (P 

< 0.001) significantly, with the highest in common bean, followed by cowpea, groundnut and soybean Table 3.  Leaf 

potassium ranged from 5.0–8.4 % and also differed (P < 0.001) significantly, with the highest in common bean, 

followed by cowpea, groundnut, and soybean Table 3. The calcium content varied between 0.28–0.48 % and differed 

(P < 0.001) significantly, with the highest in soybean, followed by cowpea, common bean and groundnut Table 3. 

Magnesium content ranged from 0.16–0.20 % that differed (P < 0.01) significantly, with the highest in soybean, 

followed by cowpea, groundnut and common bean Table 3.  Much of the soil nutrients including the Nitrogen (N) 

fixed by the legume crops is removed at harvest in seed and thus the net residual contributions of fixed N and other 

nutrients in the senescent leaves to agricultural soils after the harvest of legumes plays an important role in 

enriching the soil nutrients pool for the ensuing crops grown after the legumes. 

 

 
Figure-2. Total leaf nitrogen content (% ± SD) of four different fallow legumes (Soybean, 
groundnut, cowpea, and bean) after nineteen weeks of cultivation. Data with different letters 
are significantly different (P < 0.05). 

 
Table-3. Elemental composition (Mean ± SD) of four different fallow legumes leaves (Soybean, groundnut, cowpea, and bean) after 
nineteen weeks. 

Fallow systems Phosphorus (%) Potassium (%) Calcium (%) Magnesium (%) 

Soybean 0.25 ± 0.01c 5.02 ± 0.30b 0.48 ± 0.02a 0.20 ± 0.01a 
Groundnut 0.34 ± 0.02b 6.77 ± 0.69a 0.28 ± 0.01b 0.16 ± 0.01b 

Cowpea 0.39 ± 0.01a 7.9 ± 0.35a 0.33 ± 0.05b 0.18 ± 0.02ab 
Bean 0.41 ± 0.02a 8.35 ± 0.93a 0.28 ± 0.03b 0.16 ± 0.01b 

    Values within columns with different letters are significantly different (P < 0.05). 

 

3.4. Yield and Profitability of Grain Legume Fallow Systems 

The different legume fallow systems had varying grain yield and economic benefits that increased the economic 

value of the fallow land. Grain yield ranged from 1.0–1.9 t/ha that differed (P < 0.001) significantly, with the 

highest in groundnut (1.9 t/ha), followed by soybean (1.6 t/ha), common bean (1.3 t/ha), and cowpea (1.0 t/ha) 

Figure 3. The grain yields of the legumes used in this study are within the yield range of legumes grown as sole 

crops elsewhere in Sub Saharan Africa (Franke et al., 2018). Considering the fact that farm management practices 

were the same for the four different grain legume fallow systems, yield variations between them is likely due to crop 
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specific nutrient acquisition potentials and adaptation to environmental variables. This yield variation is reflected in 

the differential net income generated by the four grain legume fallow systems that differed (P < 0.001) significantly.  

 

 
Figure-3. Yield (t ha-1 ± SD) of four different fallow grain legumes (Soybean, groundnut, cowpea, and 
bean). Data with different letters are significantly different (P < 0.05). 

 

Accordingly, the highest profitability of integrating grain legumes in farming systems was recorded in the 

groundnut fallow, followed by soybean, and common bean, whereas cowpea generated a negative return, while the 

natural fallow system had no effect Table 4. The high profitability index recorded for groundnut fallow as compared 

to the other fallow systems justifies the dominance of groundnut cultivation in this study area (Cameroon‟s Annual 

Statistics, 2017). The negative return for cowpea could be attributed to brown rust (Uromyces spp) disease observed 

in the cowpea plots. Sulphur and potassium carbonate usually used to manage the disease were not readily available 

in the local markets. However, despite the negative returns, smallholder farmers rely almost exclusively on family 

labour thus the grain produced is consumed by the households that produce it.  

Although the green manure legumes in the weed fallow improved soil nitrogen and organic carbon as 

compared to soil before sowing, their adoption by farmers has remained limited. All efforts to promote them among 

farmers and evidence of their beneficial effects on soil fertility and cereal yields have been futile (Muhr et al., 1999; 

Carsky et al., 2001). This is likely related to a general reluctance of farmers to invest land, labour and seed in a 

technology that does not provide a quick economic return on investments (Schulz et al., 2001). 

  
Table-4. Net income (Mean ± SD) and profitability of five different fallow systems (Natural, soybean, groundnut, cowpea, and common bean). 

Fallow systems Net income ($/ha) Profitability index 

Groundnut 1401 ± 394a 2.7 
Soybean 923 ± 229ab 2.1 

Bean 657 ± 221b 1.8 

Cowpea −44 ± 40c 0.9 
Natural 0.0 ± 0.0d 0.0 

       Values within columns with different letters are significantly different (P < 0.05). 

 

4. CONCLUSION 

The grain legume fallow systems enhanced the soil nitrogen and organic carbon contents while providing food 

and income for smallholder farmers as compared to the short natural weed fallow. The highest profitability index 

recorded for groundnut fallow justifies the dominance of groundnut cultivation in the study area, while the high 

value recorded for soybean and common bean fallows is indicative of the potential for adoption of these grain 

legumes in the local cropping systems. Therefore, besides the potential agronomic and environmental benefits of 

integrating grain legumes into fallow systems, income generation from the sale of grain legumes enhances the value 

of fallow lands and may serve as viable short-term economic incentive for the smallholder farmers. 
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