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Customer demands fluctuate over a different time horizon and if forecasted with same 
forecasting method shows errors in production planning. A linear programming 
mathematical model is reformulated in this paper for aggregate production planning 
(APP) to find the best-suited forecasting techniques for different market demand 
scenarios. The model is reformulated as a linear programming model and solved using 
excel solver to minimize relevant costs (backorder cost, inventory cost, and regular 
time production cost) while meeting the forecasted demand. The system performance is 
evaluated on the basis of service level (SL) and inventory level (IL). A case studied from 
a silk industry of Bangladesh used here to define three demand scenario High, Peak and 
Few. For each of them, the service level and inventory level was compared with the 
inclusion of simple moving average (SMA), weighted moving average (WMA) and 
simple exponential smoothing (SES) forecasting methods in the APP model. We found 
from the computations that for High and Few scenarios SMA is best in terms of SL and 
IL but for Peak scenario, WMA is best in terms of IL. 
 

Contribution/Originality: The paper's primary contribution is reformulating the linear programming 

mathematical model including regular time production cost in the objective function, using the WMA and SES as 

forecasting techniques, and using the Excel Solver for solving the APP model which are different from other works. 

 

1. INTRODUCTION 

Aggregate production planning (APP) is followed by capacity planning using a medium range of demand 

forecast. Where the relationship between products and facilities are so many that lead to complex scheduling and 

production planning. APP will give a plan for maximizing the facilities and minimizing cost [1]. Utilizing an 

organization’s resources is the main goal of the APP for satisfying customer demand. It determines both output 

levels to be planned and appropriate resource mix that can be used [2]. In APP different forecasting techniques 

along with different demand scenario will help to take a managerial decision with changing demand values to 

determine which forecasting method will be suitable for future forecasting and with changing demand pattern, to 

get acquainted with market demand, forecasting techniques should be changed. Needs of customers fluctuates over 

different planning horizon ranging from half yearly to long full year. In this period, every detail for further 

processing in production is difficult to calculate. Aggregate production planning considers this situation and 

determines inventory required, production level, and work force level over that horizon. After the calculation 
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applying constraints, specific quantities that need to be produced is obtained from the aggregate production plan 

[3].  

Ho and Ireland [4] found that forecasting error does not cause a higher degree of scheduling instability 

suggesting that if the schedulers find a good forecasting method, they don’t need to be much more concerned with 

forecasting error. Appropri ate lot-size will cope with the error. Enns [5] investigated forecast bias and demand 

uncertainty in terms of material production schedule and delivery performance. The result showed increasing 

planned lead or safety stock will improve performance along with less finished goods inventory. Aardal, et al. [6] 

considered one product, continuous review inventory system where the relationship between service level and 

shortage cost is studied. As most companies desired service level is known, so from the proposed objective function 

the value of shortage cost can be obtained. Mula, et al. [7] reviewed 87 number of literature about production 

planning under uncertain environment. In their opinion, artificial intelligence based models and fuzzy set theory is 

an appropriate methodology in recent production planning.  

A study focused on the control decisions in the area of multi-period, aggregate production planning where the 

goal was to minimize the costs associated with overtime, over-and-under production and productivity cost. The 

presented solution was generally not of base-stock type, a correspondence between it and the solution of the 

classical newsboy problem was revealed [8]. In a case study [9] multiple conflict objectives were studied along 

with market demand uncertainties. The uncertainties were modeled as discrete scenarios and different probabilities 

for different expected outcomes. The researchers found that the linear degree of satisfaction can be used to find the 

best result for multiple objectives. In another study, a mixed integer linear programming model was developed by 

Silva, et al. [10] maximizing profit and minimizing late orders and workforce level changes were the objective 

function. They proposed a decision support system so that the best solution can be obtained by a practitioner 

without mathematical complexities of the model. San-José, et al. [11] studied a single-item inventory model where 

the shortages are allowed. They developed a new approach where backlogging unit cost is continuous, positive and 

non-decreasing with time. They developed an effective solution procedure to determine the optimal policy and the 

maximum average profit. On the other hand, a heuristic method is introduced by Pradenas, et al. [12] which can 

handle problems formulated without any simplification of assumptions as well as can solve more larger and complex 

problems than exact methods. The main goal of APP is to meet customer demand which is dependent on the 

forecasting and fluctuation in the demand during a certain period by minimizing the cost related to inventory, 

backorders, regular time production, sub-contracting, backlog, payroll and overtime [13].  APP strategies 

effectiveness was evaluated [14] by modeling a practical APP decision-making problem. The model was simulated 

using a hybrid discrete event simulation (DES) and system dynamics methodology. They used a total profit 

criterion to compare with the system’s performance measure. The simulation result showed prioritized APP 

strategies by the pure chase strategy, the modified chase strategy, the pure level strategy, the modified level 

strategy, the mixed strategy, and the demand management strategy, respectively. Al-e, et al. [15] presented a 

model for a medium-term planning horizon where their first objective attempts to minimize the sum of the expected 

value and second objective function highlighted the concept of customer service level. They found the practicability 

of the proposed multi-objective stochastic model as well as the proposed algorithm. 

Ning, et al. [16] presented a multiproduct APP model where uncertain variables are taken into account. Their 

objective was to obtain the belief degree of profit rather than the predetermined rate of profit. They found that if the 

uncertain variables are linear they can be solved by intelligent algorithm i.e. genetic algorithm otherwise the model 

cannot be converted to crisp equivalent. Dai, et al. [17] presented a computer simulation for such APP model with 

fuzzy linear programming. A fuzzy multi-objective linear programming model (FMOLP) was developed by Wang 

and Liang [18] for minimizing total production, carrying, and back order costs in a multi-product aggregate 

production model. The model yielded a compromised solution giving the decision maker overall level of satisfaction 

and freedom to interactively modifying the membership functions. The same researchers proposed linear approach 
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(PLP) for solving a multi-product APP problem in another study (2005). The model minimized the costs associated 

with inventory, labor, machine, overtime, subcontracting, backorder level, and warehouse capacity. But Aliev, et al. 

[19] mentioned the drawbacks of existing fuzzy models that only deals with separate APP without considering the 

interrelated nature of distribution and production system. For the solution of such similar model, Fung, et al. [20] 

proposed a parametric programming based fuzzy solution and an interactive procedure. A scheme of a multi-period 

and multi-product APP which was formulated as an integer linear programming model that uses a triangular 

possibility distribution for handling the imprecise operating costs, demands, and also for the capacity data where the 

researchers used particle swarm optimization (PE-PSO) approach to solving the APP model. The experimental 

results demonstrate that the PE-PSO variant provides better qualities in the aspects of its accuracy when compared 

to the other two algorithms genetic algorithm (GA) and a fuzzy based genetic algorithm (FBGA) [21]. A similar 

type of APP model is introduced by Khalili-Damghani and Shahrokh [22] considering three objective functions, 

including maximizing customer service level, quality of end product and minimizing total cost. They solved the 

approach using LINGO software and the results were compared with the existing methods of a company. 

Mirzapour, et al. [23] proposed the same type of APP nonlinear model but first transformed into a multi-objective 

linear one and solved applying linear programming metrics method. Gholamian, et al. [24] formulated fuzzy multi-

objective mixed integer nonlinear programming where they focused on four conflicting objectives such as 

minimizing total cost and fluctuations in the rate of changes of the workforce and maximizing customer satisfaction 

and the total value of purchasing. Another hybrid fuzzy interference system is proposed by Fiasché, et al. [25] 

where they computed Pareto solutions optimization with two different techniques.  

Two optimization techniques, Genetic Algorithm Optimization (GAO) approach and Big M method used for 

solving a real-time multi-product, multi-period aggregate production planning (APP) decision problem in another 

study. The proposed model used in solving an APP decision problem and attempted to bridge the gap of not 

including the waste cost, workforce incentive in an industrial case study. In that research, only one meta-heuristic 

algorithm (that is Genetic Algorithm) was compared with the linear programming method named Big-M technique 

Hossain, et al. [26]. Ramezanian, et al. [27] developed a mixed integer linear program for multi-product, multi-

period, multi-machine, and two-stage system where the problem was solved using the genetic algorithm and tabu 

search. Their computational result showed that the two implemented algorithms provide good solutions for APP. 

Gansterer [28] defined demand scenarios as when average demand per period is 10, utilizes 95% capacity then the 

demand scenario is called High. When Average order size (including periods in which no orders arrive) is 4, utilizes 

60% machine capacity then it is called Few demand scenarios. And finally, Peak can be defined when customer 

demand is highly volatile. This results in an average order amount of 10.  

In this paper, we reformulated an APP linear programming model to minimize cost considering inventory, 

backorder, and regular time production cost. Which will satisfy customer demand as per the forecasted demand by 

three forecasting methods simple moving average, weighted moving average and simple exponential smoothing for 

three different market demand scenarios High, Few and Peak. We have included regular time production cost in the 

objective function along with backorder and inventory cost and WMA and SES forecasting techniques along with 

SMA and used Excel Solver for solving the APP model which differentiate our work from previous literature. Then 

the service level and inventory level are calculated, for each demand forecasting techniques and different demand 

scenarios the result is analysed to find out the best forecasting technique in each market demand scenarios so that 

the production can choose best forecasting method for different market demand situations. 

 

2. MODEL FORMULATION 

2.1. Problem Description 

It is an unfortunate reality that some critical parameters such as customers demand, price are uncertain in most 

cases, and manufacturing capacity is limited by the available resources. The impact of performance efficiency can be 
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devastating if the decision maker will not get the necessary production planning. For our investigation, we 

reformulated an APP model by adding decision variable (regular time production, inventory level and backorder 

level) because the previous literature only included backorder and inventory level not the regular time production 

as a decision variable as well as constraints which is important in APP for future planning of production. Then we 

investigated the impact of three different forecasting techniques in three different demand scenarios. In our study 

demand data is forecasted on the basis of the past demand data and is used in the APP linear programming model. 

Capacity restrictions used here refer to available machine hours in the production floor. The result will be evaluated 

based on the customer service level (SL) and minimized inventory level (IL). For calculating the service level we 

sum up the number of backorders which is divided by the total amount of demand and then the percentage of the 

reverse of this value is taken. And the IL is calculated as a percentage of inventory of all products which is divided 

by the total number of products produced in a specific time horizon [28]. It was assumed that a company 

manufactures P kinds of products (two products in our case) to meet market demand over a planning horizon T. 

 

2.2. Assumptions  

1. The values of all parameters are certain over the next T planning horizon except demand.  

2. Maximum machine capacity cannot exceed to the maximum levels. 

3. The machine capacity was calculated for machine groups for a product rather individual machines. 

 

2.3. Notations 

The following notation is used after reviewing the literature and considering practical situations [29].  

p=Product type & t= period 

Rcpt=Regular time production cost per unit for pth product in period t (Tk./unit) 

Rxpt=Regular time production of pth product in period t (unit) 

Icpt=Inventory carrying cost per unit of pth product in period t (Tk./unit) 

Ixpt=Inventory level of pth product in period t (unit) 

Bcpt=Backorder cost per unit of pth product in period t (Tk./unit) 

Bxpt=Backorder level of pth product in period t (unit) 

Dpt=Forecasted demand for pth product in period t (unit) 

Mpt=hours of labor usage per unit of pth product in period t (machine-hour/unit) 

Mtmax=Maximum machine capacity available in period t (ft2) 

Iptmin=Minimum inventory in period t. 

Decision Variable: 

Rxpt=Regular time production of pth product in period t (unit) 

Ixpt=Inventory level of pth product in period t (unit)  

Bxpt=Backorder level of pth product in period t (unit) 

 

2.4. Objective Function 

Total cost is usually included in solving APP problems in most practical decision making. The proposed linear 

programming consists of a single objective function aiming to minimize the total cost of APP including regular 

time production cost, backorder cost, inventory cost. The objective function is given below: 

Min, Z =  

2.4.1. Constraints 

Inventory and Backorder Balancing Constraint: This equation ensures that production amounts meets the 

forecasted customer demand.  
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Constraint on Machine Capacity: This constraint ensures that machine capacities are not exceeded.  

 

Constraint on Carrying Inventory:  

Ixpt ≥ Iptmin 

Non-negativity Constraints on decision variables are: 

Ixpt, Bxpt, Rxpt  ≥ 0 

Where, 

t= 1,2,3, ․․․․․․․ T; 

and    P= 1,2,3, ․․․․․․․ P; 

Where, in the first constraint (1) Dpt denotes forecasted customer demand of the pth product in period t and 

represents the sum of regular time production, inventory levels, backorder levels essentially should equal market 

demand.  The second equation ensures that the production amount does not exceed machine capacity and the third 

constraint determine the level of inventory. Model is expanded and solved for 2 products (P=2) and three periods 

(T=3). The expansion is given in the Appendix. 

 

3. CASE DESCRIPTION 

The APP decision problem for manufacturing plant presented here focuses on developing an interactive LP 

approach for minimizing total costs. In our study, we used secondary data from a journal [29] and demand 

forecasting scenarios are derived from the data provided by a silk industry of Bangladesh. The demand follows a 

seasonal demand pattern. The planning horizon is three months (t=3) long, including April, May, and June. The 

model includes two types of items namely the Tosor Silk Shari (product 1) and Panjabi (product 2). 

 

3.1. Data Description 

1. Initial inventory in period 1 is 500 units of product 1 and 200 units of product 2. 

2. Hours of machine usage per unit for each of the two planning periods are 0.1 machine hours for product 1 

and 0.08 machine hours for product 2. 

3. The previous year demand was assumed on the basis of data provided by a silk industry of Bangladesh. 

4. The demand scenarios are considered, April as Few, May as High, and June as Peaks on the basis of 

demand fluctuations. 

 
Table-1.  Initial inventory, hours of machine usages per unit of product (Tosor Silk Shari and Panjabi). 

         Source: Chakrabortty and Hasin [29]. 

Item Product 1 Product 2 

Initial Inventory 500 units 200 units 
Hours of machine usage per unit of product. 0.1 machine-hour 0.08 machine-hour 

 
Table-2. Related operating cost. 

             Source: Chakrabortty and Hasin [29]. 

Product Rcpt (Tk./unit) Icpt (Tk./unit) Bcpt (Tk./unit) 

1 22 3.5 42 
2 20 4 47 
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Table-3. Maximum machine capacity and minimum inventory. 

Item(unit) Period 1 Period 2 Period 3 

I1tmin 300 450 500 
I2tmin 480 580 470 
M1max 300 350 360 
M2max 160 180 170 

             Source: Data collected from a silk industry in Bangladesh and the table is prepared by authors. 
 

Table-4.  Previous year demand of product 1 (Tosor Silk Shari). 

Year Period 1 Period 2 Period 3 

2015 3000 3450 3580 
2016 3200 3550 3600 
2017 3300 3700 3700 

             Source: Data collected from a silk industry in Bangladesh and the table is prepared by authors. 

 
Table-5.  Previous year demand of product 2 (Panjabi). 

Year Period 1 Period 2 Period 3 

2015 1800 1880 2200 
2016 2000 2000 2150 
2017 2100 1900 2300 

             Source: Data collected from a silk industry in Bangladesh and the table is prepared by authors. 

 

4. RESULT 

Decision variable and objective function values of the APP model using different forecasting methods are 

solved here by using Microsoft Excel (2013) Solver Add-Inns which are given in Table 6. Objective value for 

SMA= 410009 Tk., for WMA= 451655 Tk., for SES= 434655.99 Tk. Comparison using a bar chart is shown in 

Figure 1. Comparing the total cost for three for the methods it can be seen that SMA shows the minimum cost. The 

total cost for SMA is less than others because both the backorders and inventory level is minimum comparing the 

other two. The result of our computational study is presented in Table 7. We report the average service level (SL) 

and inventory level (IP) percentage for each demand and APP scenario. The best results are in the blocked font. 

For three of the forecasting techniques SMA, WMA and SES different market demand scenarios are presented 

with SL and INV. The highest the SL and lowest the INV is considered a good result. In the Few demand scenario, 

SL is highest 91.57% and INV is lowest 15.60% for SMA than other two APP scenario such as SL 91.51% and INV 

17.96% for WMA and SL 86.88% and INV 16.73 % for SES. For a High market demand scenario, SL is highest 

94.36% and lowest 17.89% than the other two forecasting techniques like SL 81.17% and INV 17.91% for WMA 

and SL 90.73% and INV 17.96% for SES. But the Peaks demand scenario shows a different result in INV than Few 

and High market demand scenario. The lowest INV is 16.92% which is for WMA than the other two forecasting 

techniques which are INV 16.94% for SMA and INV 17.31% for SES. 

 

 
Figure-1. Comparison between SMA, WMA, SES on the basis of total cost. 
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Table-6.  Value of decision variables. 

Variable Value (Units) (MA) Value (Units) (WMA) Value (Units) (SES) 

Ix11 300 400 360 

Bx11 87 210 183 

Rx11 3000 2900 3020 

Ix12 450 450 450 

Bx12 304 465 335 

Rx12 3500 3500 3500 

Ix13 500 500 500 

Bx13 381 525 413 

Rx13 3600 3600 3600 

Ix21 480 480 480 

Bx21 278 465 414 

Rx21 2000 2000 2000 

Ix22 580 580 582 

Bx22 55 241 175 

Rx22 2250 2250 2248 

Ix23 470 470 493 

Bx23 37 204 142 

Rx23 2125 2132 2138 
                       Source: The table is prepared by authors using MS-Excel 2013.  

 
Table-7.  Final result of service level and inventory percentage. 

Demand 

APP Scenario 

SMA WMA SES 

SL IL SL IL SL IL 

Few 91.57% 15.60% 91.51% 17.96% 86.88% 16.73% 
High 94.36% 17.89% 81.17% 17.91% 90.73% 17.96% 
Peak 93.95% 16.94% 80.92% 16.92% 91.73% 17.31% 

                              Source: The table is prepared by authors using MS-Excel 2013. 

 

5. DISCUSSIONS 

It can be seen from the computational result that in the case of well-utilized capacities (demand scenario High) 

the service level is maximum among all other demand scenarios. This is because in the case of High demand 

scenarios when the capacity is scarce APP is the best choice for satisfying customer demand. Here SMA setting 

gives the best result for both High and Few demand scenario in terms of SL and IL.  

In demand scenario Few the maximum SL found here is 91.57% and minimum IL is 15.60% which is the best 

result in the entire APP scenario for SMA.  WMA also shows a near result in terms of SL but IL is high compared 

to SMA and IL. The best SL in the entire APP scenario is obtained applying SMA for High. Here also SMA shows 

the best result in terms of SL and IL than the other two techniques. The Peak is the most challenging one in terms 

of planning. The best result is found for SMA with a 93.95% service level. WMA shows the worst SL for Peak but 

minimized IL. The worst result of applying WMA is because it is very important to estimate accordingly as an 

overestimated Peak season will automatically lead to a huge allocation of resources. Therefore there will be no free 

capacity resources to react to unexpected customer orders. 

So, we can state that aggregate planning with the simple moving average for every mentioned demand scenario 

seems to be a very good choice here. It dominates the other two forecasting methods. As the trade-off between 

service and inventory level will depend on direct and indirect costs for holding products on stock and delivery time 

according to the privilege of a company, so the best decision will be chosen accordingly. 

 

6. CONCLUSIONS AND FUTURE WORK 

For forecasting demand, Linear Algorithm is used to solve Aggregate production planning problem to optimize 

the production cost for multiple products in multiple time horizon. This study is based on situation, where a 

manufacturer produces multiple products in multiple time period. This complex situation needs to decide which 
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forecasting method is best for being flexible with market demand variations. For that reason, we chose three 

forecasting techniques (simple moving average, weighted moving average, simple exponential smoothing) for three 

assumed market demand scenarios (High, Few and Peak) which were used as an input to obtain the optimum 

decision on the reformulated LP model. By analyzing all the factors above, inventory level and service level is 

calculated in this study. Comparing among the cost calculated using simple moving average, weighted moving 

average, and simple exponential smoothing, we found the values of the simple moving average is better than others. 

The major limitation of our study is that all parameters related to APP were not included in the proposed model 

and the results are influenced by typical situations faced and provided data by the silk industry, so we are not able 

to derive general statements about the best forecasting technique suitable for different demand scenarios. But the 

model and the procedures for finding the best forecasting techniques in maximizing service level and minimizing 

inventory level can be applied to any other type of environments for decision making.   

We used Excel solver to solve the APP model and find the inventory, backorder and regular time production 

amount minimizing cost. The APP problem can be solved by other optimization techniques. Different APP 

strategies can be applied and standard optimization methods such as Genetic Algorithm (GA), fuzzy method, mixed 

integer optimization programming (MIOP), Big M method may also be applied in the model. 
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APPENDIX 

Objective function,  

Min, Z =  

 

For P=2 Products and T=3 periods 

Minimize Z= 

+

 

CONSTRAINTS 

1. Inventory and Backorder Balancing Constraint 

        

 

For P=2 Products and T=3 periods             

  

 

 

 

 

 

2. Constraint on Machine Capacity: 

               

For P=2 Products and T=3 periods             
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3. Constraint on Carrying Inventory:  

Ixpt ≥ Iptmin        

For P=2 Products and T=3 periods                                                                               
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