

Investigating critical success factors in implementing marketing strategy in FMCG sector in Pakistan

Abdul Basit¹

Amiya Bhaumik²⁺

Abdul Aziz Khan

Niazi³

^{1,2,3}*Lincoln University College, Selangor, Malaysia.*

¹*Email: abasit@lincoln.edu.my*

²*Email: amiya@lincoln.edu.my*

³*Email: aziznazi68@yahoo.com*

(+ Corresponding author)

ABSTRACT

Article History

Received: 12 August 2025

Revised: 18 December 2025

Accepted: 20 January 2026

Published: 27 January 2026

Keywords

Critical success factors

FMCG sector

Implementing marketing

strategies

ISM

MICMAC

Pakistan.

Aiming the study at analyzing Critical Success Factors (CSFs) in implementing marketing strategy in the FMCG sector in Pakistan, the design consists of a survey of literature, primary data collection, modeling, and analysis. The population under study includes all stakeholders of the phenomenon, with a heterogeneous focus group (experts) from stakeholders serving as the sample. The sample size is eighteen experts. The modeling method used is ISM, and the analysis method is scale/data-centric MICMAC. The results of ISM show that the factor, namely brand visibility & awareness, occupies the bottom of the model; the composition of the team and diversity, and new business approaches occupy the middle of the model; whereas, the other fourteen factors occupy the top of the ISM model. The results of scale-centric MICMAC analysis indicate that CSFs, namely brand visibility & awareness, fall into the independent cluster, whereas all other factors fall into the linkage cluster. The dependent and autonomous clusters are empty. The results of data-centric MICMAC analysis show that CSFs, namely brand visibility & awareness, and green marketing campaigns, are independent; factors such as marketing innovation and market-oriented organizational culture are dependent; and all other factors fall into the linkage cluster. The autonomous cluster is empty. The study is based on first-hand real-time data collected from stakeholders and analyzed through scientific methodologies, providing valuable insights. It has profound theoretical and practical implications, contributing a list of CSFs in implementing marketing strategy, a scientific structural model, MICMAC diagrams, and a wealth of new and novel information about the phenomenon. Additionally, it offers a framework and important solid input for designing future research.

Contribution/Originality: This study is one of the few that investigates phenomena in a holistic manner using data collected from stakeholders. It employs a unique methodology and contributes to the existing literature by providing a list of CSFs, a structural model, a driving-dependence diagram, and new information on level-to-level and at-level contextual relationships of CSFs.

1. INTRODUCTION

Studying Critical Success Factors (CSFs) in the Fast Moving Consumer Goods (FMCG) sector is a vital phenomenon for understanding key drivers of success and leveraging them to achieve sustainable growth and a competitive advantage. It is equally important to understand the interrelationships of CSFs in implementing marketing strategies in the FMCG sector, which is essential for businesses to prosper (Chowdhury, Fuad, Nipa, & Nath, 2024). This clear understanding of CSFs helps in prioritizing key areas, resource allocation, performance

improvement, benchmarking, progress tracking, adapting to change, understanding the FMCG landscape, and understanding and implementing emerging technologies. The companies can identify those factors that are not critical for success as such and can be eliminated. CSFs are also important because of facilitate communication between different stakeholders, monitor and control the scope, changes, and risks. The sources of CSFs are competitive strategy, industry positioning, geographical location, and managerial expertise. It is a hot topic of research in the area of sales and marketing research. Determining the CSFs by the companies enables them to better optimize their performance measures and helps them to determine which are the most important things to be done (Kamakela, Callychurn, & Hurreeram, 2023).

The research in an international context is refined, rich, and crystallized on this topic. There are some studies similar to the aspects of the study in hand, viz: It is essential to analyze the global industry potential before developing any marketing strategy, as it is driven by market dynamics such as social, environmental, legal, economic, or competitive circumstances (Thain & Bradley, 2014). Intimidations of new players into the FMCG industry are somewhat limited because it requires significant investments to be competitive (Oraman, Azabagaoglu, & Inan, 2011). In addition to this, consumers are like an obstacle for new entrants as they act as a double-edged sword in the FMCG sector (Khalil & Villace, 2021). Career growth and reward flexibility are key predictors of employee value proposition that contribute to improved performance in FMCG firms (Salau et al., 2018). Companies strive to distinguish their FMCG packaging by enhancing consumer experience and product quality to create value addition (Srinivasan & Lu, 2014). Similarly, there is a need for sustainable packaging; however, the gap between that need and FMCG's capacity is also evident (Jain & Hudnurkar, 2022). Consumer perception of multi-sensoring and green packaging has a direct positive effect on environmental sustainability (Dantas et al., 2023). One of the studies conducted to identify the relationship between job satisfaction and performance found a substantial relationship among them in the context of the FMCG sector of Pakistan (Qureshi et al., 2019). While studying the FMCG's financial brand values, it is concluded that brand value significantly influences stock prices (Niyas & Kavida, 2022). Intangible assets have a positive impact on the value of companies; however, the majority of FMCGs are under-rated in the value of intangible assets compared to the theoretical and fundamental value of intangible assets (Azamat, Galiya, Bezhan, & Nurdana, 2023).

The authors could not find any study that directly and comprehensively ascertains or addresses the issue of determining the contextual relationships among CSFs in implementing marketing strategies in the FMCG sector in Pakistan. It is an issue of utmost importance and a research-worthy problem that has not been addressed by contemporary research. Therefore, the objectives of the research are: i) to identify CSFs in implementing marketing strategies in the FMCG sector, and ii) to model and analyze them. The research questions include: i) which CSFs need top priority? ii) which CSFs are relatively less important? and iii) what are the contextual relationships among the CSFs? The authors considered an array of research methods to be used for the study, including MOORA, MULTI-MOORA, Non-dominated Sorting Genetic Algorithm II, PCA, ISM, PROMETHEE, Regression Analysis, RIDIT, MICMAC, Summation Algebra, SWARA, Treatment of Alternatives According to the Importance of Criteria, TOPSIS, VIKOR, Weighted Aggregated Sum Product Assessment, Weighted Process Model, and Weighted Sum Model.

From within the array of methods, ISM with MICMAC is chosen for the study. It is a simple, understandable, and widely used scientific method appropriate for the type of problems addressed in this study. This research, for a deeper understanding of the phenomenon, contributes to contemporary literature by: i) listing CSFs in implementing marketing strategy in the FMCG sector in Pakistan, ii) developing a scientifically directed structural model of CSFs, iii) creating a scale-centric MICMAC diagram, iv) developing a data-centric MICMAC diagram, v) providing new supplementary information and a deeper understanding of level-to-level and at-level contextual relationships of CSFs in implementing marketing strategies in the FMCG sector, vi) offering a framework and a solid basis for designing future quantitative studies, and vii) identifying predictive significant theoretical causal links between factors. It is

noteworthy that the authors could not find any study with contributions equivalent to the current research. The remaining article is divided into literature survey, design/data/methods, analysis, results, discussion, and conclusion.

2. LITERATURE REVIEW

A literature review is considered an essential component of a research study because it establishes the context of the study, provides a solid foundation for justification, helps identify gaps, informs methodological choices, contextualizes findings, enhances credibility, and prevents duplication. Recognizing the importance of reviewing contemporary literature, the authors explored numerous renowned research databases such as JSTOR, ScienceDirect, EBSCOhost, ProQuest, CORE, PubMed, EMBASE, ERIC, IEEE Xplore, DOAJ, Dryad, and EThOS. They employed keywords like 'critical success factors in implementing marketing strategies in FMCG sector,' 'CSFs in implementing marketing strategies,' 'marketing strategies,' 'strategies in FMCG sector,' 'CSFs of FMCG sector in Pakistan,' 'FMCGs in Pakistan,' and 'critical success factors of FMCGs in Pakistan' in the advanced search options of these databases. The searches yielded numerous research studies covering various topics related to FMCG in general. However, relatively few studies directly addressed the specific issues under investigation. Nonetheless, the authors found sufficient literature to crystallize the context of the study.

The literature was reviewed critically, and some highly relevant research studies are being reported here, maintaining brevity without compromising contextual relevance. The growing demand to reduce water usage and emissions in manufacturing sectors has led to increased calls for enhancing cleaning operations in the FMCG industry. These processes warrant particular examination due to the wide variety of brands, which necessitates frequent cleaning. However, there is limited understanding of the cleaning rates in complex plants, and as a result, current industrial practices remain far from optimization (Yang, Martin, Montague, & Fryer, 2008). Although plastics play a crucial role in the packaging of most FMCG, they also pose a significant environmental threat. Given the short lifespan and rapid turnover of FMCG packaging, these products contribute substantially to plastic pollution (Ma, Park, & Moultrie, 2020). The FMCG industry constantly generates extensive waste. Sustainability has become a key concern for societies worldwide. Compared to just five years ago, today's consumers are significantly more conscious of the environmental impact of their product choices (Jain & Hudnurkar, 2022). Implementing activities and strategies such as sales promotions, gifts, and exchange offers carries significant managerial implications and offers promising future opportunities (Ali & Dubey, 2014). Consumer purchase intention, lifestyle, and subjective norms are all significantly and positively associated with purchase behavior (Wang et al., 2024). Moreover, purchase intention plays a significant and positive mediating role between exogenous variables and purchase behavior, i.e., the endogenous variable (Bukhari et al., 2023). There is a strong relationship among customer expectations, perceived quality, perceived value, and brand loyalty. Companies that hold a dominant position in the market encounter difficulties in building brand loyalty because of poor quality, expensive pricing, and insufficient service (Rehman, Zelin, & Hussain, 2025). Good working conditions for in-store merchandisers increase brand sales across various FMCG categories (Meyer, González, & Lopez-Lomelí, 2022). Technology integration and forecasting play a vital role in the adoption of machine learning in the context of FMCGs. It provides insights to practitioners to understand the cause-and-effect relationships among these factors (Gardas & Narwane, 2024). Normative pressures act as a mediator between religiosity and the purchase of FMCG products (Sardana, Cavusgil, & Gupta, 2021). Mindset metrics (popularly known as MSMs) are linked to market performance; however, various mindset metrics correspond to different types of market performance (Anselmsson & Bondesson, 2015). An advanced software solution in FMCG utilizes semantic web technologies that allow users to connect data from multiple Excel spreadsheets and relational databases in real-time for purposes of data collection, collaboration, and reporting. This framework introduces a novel approach to supply chain collaboration by employing an underlying ontology, semantic technologies, and visualization techniques (Perdikakis, Shukla, & Kiritsis, 2015). The adoption of Marketing-4.0 practices primarily assists FMCG firms in areas such as: (i) personalized targeting, (ii) real-time customer insights, (iii) efficient marketing campaigns, and (iv)

strategic utilization. Each of these is explored within the context of big data-enabled marketing (Mukhopadhyay, Singh, & Jain, 2024). Brand and retailer partnerships, consumer participation, operational efficiency, business model profitability, and ecosystem development are key success factors. They highlight that while consumers are motivated to engage in circular business models by potential environmental benefits, concerns about logistics-related impacts, convenience, accessibility, and cost barriers for companies influence participation. This leads to recommendations for expanding FMCG reuse models (Bocken, Harsch, & Weissbrod, 2022). Retailers are well-informed about products and new launches, while managers focus on improving retailer satisfaction through activities such as sales promotions and exchange offers for better future prospects (Ali & Dubey, 2014). The growing demand to minimize water usage and emissions in manufacturing sectors has led to calls for enhancing cleaning operations within the FMCG industry (Yang et al., 2008). Most of these new-to-consumer purchases were triggered by in-store factors, e.g., noticing new brands, price promotions, and stock shortages (Bogomolova, Anesbury, Lockshin, Kapulski, & Bogomolov, 2019). From the review of the literature, it can be clearly understood that there is a dearth of studies on the topic at hand; however, CSFs can be found in a scanty manner in many studies that have been aggregated in a tabular form below with the source (Table 1).

Table 1. Critical success factors in implementing marketing strategy in the FMCG sector.

Code	CSFs	Description	Source
1	Customers' digital engagement	It offers a deeper understanding of customers' preferences and their relationship with marketers.	Meire, Hewett, Ballings, Kumar, and Van den Poel (2019)
2	Data-driven decision making	Data is used to optimize the campaigns, and it allows us to evaluate the campaign success in real-time.	McCarthy, Fader, and Hardie (2017)
3	Brand visibility and awareness	The presence of the brand ensures the success of the marketing strategy.	Suggested by Experts
4	Marketing innovation	Proactive in embracing emerging digital tools and platforms.	Longoni and Cian (2020)
5	Understanding consumer behavior	Personalization based on data insights has been key to the success of marketers.	Ali and Dubey (2014)
6	Responsive customer service	Quick responses are essential to improve customer satisfaction.	Hollebeek, Kumar, Srivastava, and Clark (2023)
7	Integration of AI	A successful and right blend of integration of AI in marketing decision-making is essential.	Hoffman, Moreau, Stremersch, and Wedel (2021)
8	Adaptation	Agility allows responding quickly to market changes.	Beverland, Wilner, and Micheli (2015)
9	Green marketing campaigns	Sustainability principles in product design, branding, packaging, and promotion may lead to effective marketing strategies.	Longoni and Cian (2020)
10	Marketing budgeting	Put effort into tying resources to the goals, as opposed to conventional marketing budgeting.	Sriram and Kalwani (2007)
11	Handling customer relationships	Unremitting course of developing good relationships with the customers.	Haenlein (2017)
12	Handling customer & supplier coordination	To provide the customized offer, there is coordination that is pertinent.	Wang, Lee, Fang, and Ma (2017)
13	Netting market information	The capability to capture marketing information to produce insights about customers and competitors.	Du, Netzer, Schweidel, and Mitra (2020)
14	Market-oriented organization culture	The culture of the organization is consistent with the marketing concept.	Moorman and Day (2016)
15	Market-based organization learning	A core competency relating to current and future customers' needs and disseminated across the departments.	Sinkula (1994)
16	Composition of the team and diversity	Cross-functional team assists quick, real-time diffusion of information and diverse viewpoints.	Lynch and West (2017)
17	New business approaches	Find out new ways to improve marketing practices.	Suggested by Experts

The study is, therefore, built on the seventeen CSFs as listed in the Table 1.

3. DESIGN, DATA AND METHODS

The study is based on an interpretivist research philosophy and an inductive research approach. The design of the study includes a literature survey for extracting an array of CSFs, primary data collection, modeling, and analysis. The population under study consists of all stakeholders of the phenomenon, with sampling conducted through a focus group comprising experts from these stakeholders. The nature of sampling is heterogeneous, and the sample size is eighteen experts (Clayton, 1997; Khan & Khan, 2013; Li, Huang, Sun, & Li, 2019; Shen, Song, Wu, Liao, & Zhang, 2016). The data are collected through a matrix-type $\{n(n - 1)/2\}$ questionnaire in a field setting. The method of extraction of data from the minds of the individuals is a one-on-one face-to-face semi-structured interview recorded on the questionnaires. The method of modeling is Interpretive Structural Modeling (ISM), and the method of analysis is scale/data-centric Cross Impact Matrix Multiplication Applied to Classification, i.e., commonly known as MICMAC (Godet, 1986; Warfield, 1974). It is also important to clarify the scope of the methodology. The ISM method has few methodological precincts (Jena, Sidharth, Thakur, Kumar Pathak, & Pandey, 2017), like: i) it can only be utilized by individuals familiar with its processes and capable of deducing the required information from it. The true benefits of its implementation can only be reaped if the computer/software facility is available. The interpretation of links is slightly feeble; therefore, it may provide similar interpretations for the model drawn by different individuals. It provides answers to "what" and "how" in theory building but remains silent about the causality of linkages; hence, it is unable to answer "why." It also ignores transitive linkages in a digraph. Despite these limitations, this method is very useful and is increasingly being applied in scientific research.

Experts' Panel: The focus group from the stakeholders is selected for data collection and comprises experts in the field. The experts in the focus group are recruited according to predetermined criteria: i) an expert must be a university graduate; ii) an expert must have more than ten years of experience as a marketer/manager of FMCG firms, suppliers, regulators, researchers in this field, retailers, wholesalers, etc.; iii) one must have a clear acumen of research; iv) one must be willing to participate as a respondent in the study; v) one must possess sufficient knowledge of the phenomenon under study (Attri, Dev, & Sharma, 2013; Warfield, 1973, 1974). A total of eighteen experts are recruited as respondents (viz., researchers three, regulators one, marketers four, managers three, retailers three, wholesalers two, manufacturers one, and analysts one). The data elicitation is done by a VAXO-based questionnaire, commonly used in ISM-based studies. The method of extraction of data from the minds of the individuals is as enumerated in the above section.

After the data is collected, the step-wise procedure of ISM is applied as follows:

1. The data is aggregated into a structural self-interaction matrix using MS Excel.
2. The VAXO codes are converted into binary codes as per the rules commonly used for this purpose.
3. The binary matrix is checked for transitive relations and is converted into a transitive binary matrix.
4. The transitive binary matrix is partitioned into submatrices using the iteration method.
5. The underlying structural model is extracted on diagonals.
6. ISM modelling is presented in a summarized form.
7. The ISM model is prepared using the information of iterations and elementary concepts of flow chart theory and geometry.
8. Using the information of the transitive binary matrix, scale-centric MICMAC analysis is performed.
9. Using the information of the transitive binary matrix, data-centric MICMAC analysis is performed.
10. The results of the literature review, ISM, and MICMAC are juxtaposed.
11. The results are critically discussed.

As a first step, the data are aggregated using the rule 'minority gives way to majority,' and as a result, a Structural Self-Interaction Matrix is obtained (SSIM) Table 2.

Table 2. SSIM.

Code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1		V	O	A	O	X	O	V	O	O	O	X	V	A	X	A	O
2			O	O	A	X	X	A	A	V	A	X	A	O	O	O	O
3				O	V	V	V	V	O	V	O	V	V	O	O	V	V
4					O	O	O	V	O	A	X	O	O	A	A	X	O
5						O	O	V	O	A	V	A	X	X	A	O	A
6							A	V	A	O	O	X	O	V	O	A	O
7								A	O	O	O	V	V	X	V	O	O
8									O	A	A	O	A	V	A	O	X
9										A	O	X	O	O	V	O	A
10											V	X	O	V	O	A	O
11												A	V	V	A	A	V
12													X	O	V	O	V
13														V	V	X	V
14															O	X	A
15																V	A
16																	A
17																	

Table 2 (SSIM) is converted into a binary matrix (Table 3) using rules as devised in Warfield (1973).

Table 3. Binary Matrix Initial.

Code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	1	0	0	0	1	0	1	0	0	0	1	1	0	1	0	0
2	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0
3	0	0	1	0	1	1	1	1	0	1	0	1	1	0	0	1	1
4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0
5	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	0	0
6	1	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0
7	0	1	0	0	0	1	1	0	0	0	0	1	1	1	1	0	0
8	0	1	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1
9	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
10	0	0	0	1	1	0	0	1	1	1	1	1	0	1	0	0	0
11	0	1	0	1	0	0	0	1	0	0	1	0	1	1	0	0	1
12	1	1	0	0	1	1	0	0	1	1	1	1	1	0	1	0	1
13	0	1	0	0	1	0	0	1	0	0	0	1	1	1	1	1	1
14	1	0	0	1	1	0	1	0	0	0	0	0	0	1	0	1	0
15	1	0	0	1	1	0	0	1	0	0	1	0	0	0	1	1	0
16	1	0	0	1	0	1	0	0	0	1	1	0	0	1	0	1	0
17	0	0	0	0	1	0	0	1	1	0	0	0	0	1	1	1	1

Table 3 is converted into a transitive binary matrix (Table 4), i.e., every 0 is checked for a transitive relationship, and if such a relation is found, the 0 is replaced with 1. The driving and dependence powers are also calculated, which are subsequently used in MICMAC analysis.

Table 4. Binary Matrix Transitive.

Code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Driving
1	1	1	0	1*	1*	1	1*	1	1*	1*	1	1	1*	1	1*	1	1*	16
2	1*	1	0	1*	1*	1	1	1*	1*	1	1*	1	1*	1*	1*	0	1*	15
3	1*	1*	1	1*	1	1	1	1	1*	1	1*	1	1	1*	1*	1	1	17
4	1	1*	0	1	0	1*	1*	1	0	1*	1	1*	1*	1*	1*	1	1*	14
5	1*	1	0	1*	1	1*	1*	1	0	1*	1	1*	1	1	1*	1*	1*	15
6	1	1	0	1*	1*	1	1*	1	1*	1*	1*	1	1*	1	1*	1*	1*	16
7	1*	1	0	1*	1*	1	1	1*	1*	1*	1*	1	1	1	1	1*	1*	16
8	1*	1	0	1*	1*	1*	1	1	1*	1*	0	1*	1*	1	1*	1*	1	15
9	1*	1	0	1*	1*	1	1*	1*	1	1*	1*	1	1*	1	1*	1*	1*	16
10	1*	1*	0	1	1	1*	1*	1	1	1	1	1	1*	1	1*	1*	1*	16
11	1*	1	0	1	1*	1*	1*	1	1*	1*	1	1*	1	1	1*	1*	1	16
12	1	1	0	1*	1	1	1*	1*	1	1	1	1	1	1*	1	1*	1	16
13	1*	1	0	1*	1	1*	1*	1	1*	1*	1*	1	1	1	1	1	1	16
14	1	1*	0	1	1	1*	1	1*	0	1*	1*	1*	1	1*	1	1*	1	14
15	1	1*	0	1	1	1*	1*	1	0	1*	1	1*	1*	1*	1	1	1*	15
16	1	1*	0	1	1*	1	1*	1*	1*	1	1	1*	1	1	1*	1	1*	16
17	1*	1*	0	1*	1	1*	1*	1	1	1*	1*	1*	1	1	1	1	1	16
Dependence	17	17	1	17	16	17	17	17	13	17	16	17	17	17	17	16	16	

Note: “*” Table 4, 8, and 9 indicate transitive relationships, and where 0 is replaced with 1*.

Table 4 is partitioned into submatrices (Table-5-7) using the iteration method and elementary concepts of set theory.

Table 5. First level iteration.

Code	Reachability set	Antecedent set	Intersection set	Level
1	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
2	1,2,4,5,6,7,8,9,10,11,12,13,14,15,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,17	I
3	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	3	3	
4	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
5	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
6	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
7	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
8	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
9	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
10	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
11	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
12	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
13	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
14	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16	I
15	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	I
16	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,4,5,6,7,8,9,10,11,12,13,14,15,16,17	
17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17	

Table 6. Second Level Iteration.

Code	Reachability set	Antecedent set	Intersection set	Level
3	3,16,17	3	3	
16	16,17	3,16,17	16,17	II
17	16,17	3,16,17	16,17	II

Table 7. Third Level Iteration.

Code	Reachability set	Antecedent set	Intersection set	Level
3	3	3	3	III

The results of Table 5 to 7 are represented in a rearranged transitive binary matrix (Table 8) in which the underlying model appears on diagonals shown as grey.

Table 8. Re-arranged matrix.

Code	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	3
1	1	1	1*	1*	1	1*	1	1*	1*	1*	1	1	1*	1	1*	1*	0
2	1*	1	1*	1*	1	1	1*	1*	1	1*	1	1*	1*	1*	0	1*	0
4	1	1*	1	0	1*	1*	1	0	1*	1	1*	1*	1*	1*	1	1*	0
5	1*	1	1*	1	1*	1*	1	0	1*	1	1*	1	1	1*	1*	1*	0
6	1	1	1*	1*	1	1*	1	1*	1*	1*	1	1*	1	1*	1*	1*	0
7	1*	1	1*	1*	1	1	1*	1*	1*	1*	1	1	1	1	1*	1*	0
8	1*	1	1*	1*	1*	1	1	1*	1*	0	1*	1*	1	1*	1*	1	0
9	1*	1	1*	1*	1	1*	1*	1	1*	1*	1	1	1*	1	1*	1*	0
10	1*	1*	1	1	1*	1*	1	1	1	1	1	1	1*	1	1*	1*	0
11	1*	1	1	1*	1*	1*	1	1*	1*	1	1*	1	1	1*	1*	1	0
12	1	1	1*	1	1	1*	1*	1	1	1	1	1	1	1*	1	1*	0
13	1*	1	1*	1	1*	1*	1	1*	1*	1*	1	1	1	1	1	1	0
14	1	1*	1	1	1*	1*	1	1*	0	1*	1*	1*	1*	1*	1	1*	0
15	1	1*	1	1	1*	1*	1	0	1*	1	1*	1*	1*	1	1	1*	0
16	1	1*	1	1*	1	1*	1*	1*	1*	1	1	1*	1	1*	1	1*	0
17	1*	1*	1*	1	1*	1*	1	1	1*	1*	1*	1*	1	1	1	1	0
3	1*	1*	1*	1	1	1	1	1*	1	1*	1	1	1*	1*	1	1	1

Note: “*” Table 4, 8 and 9 indicate transitive relationships and where 0 is replaced with 1*.

The process of ISM from Table 4 to 8 is presented in an abridged form below as Table 9.

Table 9. Compressed presentation of ISM.

		Reachability set																	Driving power	
		Code	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	3	
Antecedent set	I	1	1	1	1*	1*	1	1*	1	1*	1*	1	1	1*	1	1*	1*	0	16	
	2	1*	1	1*	1*	1*	1	1	1*	1*	1	1*	1	1*	1*	1*	0	1*	0	15
	4	1	1*	1	0	1*	1*	1	0	1*	1	1*	1*	1*	1*	1	1*	0	14	
	5	1*	1	1*	1	1*	1*	1	0	1*	1	1*	1*	1*	1*	1*	1*	0	15	
	6	1	1	1*	1*	1	1*	1	1*	1*	1*	1	1*	1	1*	1*	1*	0	16	
	7	1*	1	1*	1*	1	1	1*	1*	1*	1*	1	1	1	1	1*	1*	0	16	
	8	1*	1	1*	1*	1*	1	1	1*	1*	0	1*	1*	1	1*	1*	1	0	15	
	9	1*	1	1*	1*	1	1*	1*	1	1*	1*	1	1*	1*	1	1*	1*	0	16	
	10	1*	1*	1	1	1*	1*	1	1	1	1	1	1	1*	1	1*	1*	0	16	
	11	1*	1	1	1*	1*	1*	1	1*	1*	1	1*	1	1	1*	1*	1*	1	16	
	12	1	1	1*	1	1	1*	1*	1	1	1	1	1	1	1*	1	1*	1	16	
	13	1*	1	1*	1	1	1*	1	1*	1*	1	1	1	1	1	1	1	0	16	
	14	1	1*	1	1	1*	1	1*	0	1*	1*	1*	1*	1*	1	1*	1	0	14	
	15	1	1*	1	1	1*	1*	1	0	1*	1	1*	1*	1*	1	1	1*	0	15	
II	16	1	1*	1	1*	1	1*	1*	1*	1	1	1*	1	1	1*	1	1*	0	16	
	17	1*	1*	1*	1	1*	1*	1	1	1*	1*	1*	1*	1	1	1	1	0	16	
	III	3	1*	1*	1*	1	1	1	1*	1	1*	1	1	1*	1*	1	1	1	17	
			17	17	17	16	17	17	17	13	17	16	17	17	17	17	16	1		
			Dependence power																	

The model extracted from iterations Table 5 to 7 is presented in a directed graph using the elementary concepts of flow chart theory and directed graph theory Figure 1.

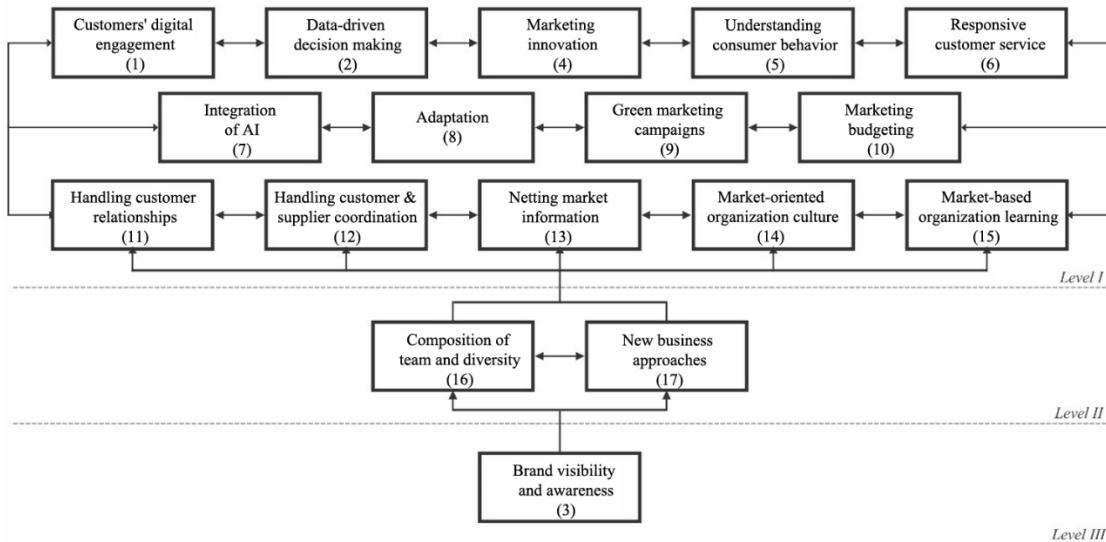


Figure 1. ISM model.

Figure 1 reveals that CSFs coded as 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 fall at *Level I*. CSFs coded as 16 and 17 come at *Level II*. CSFs coded as 3 come at *Level III*.

Using the transitive binary matrix (Table 4), the MICMAC analysis (both scale-centric (Figure 2) and data-centric (Figure 3) is performed.

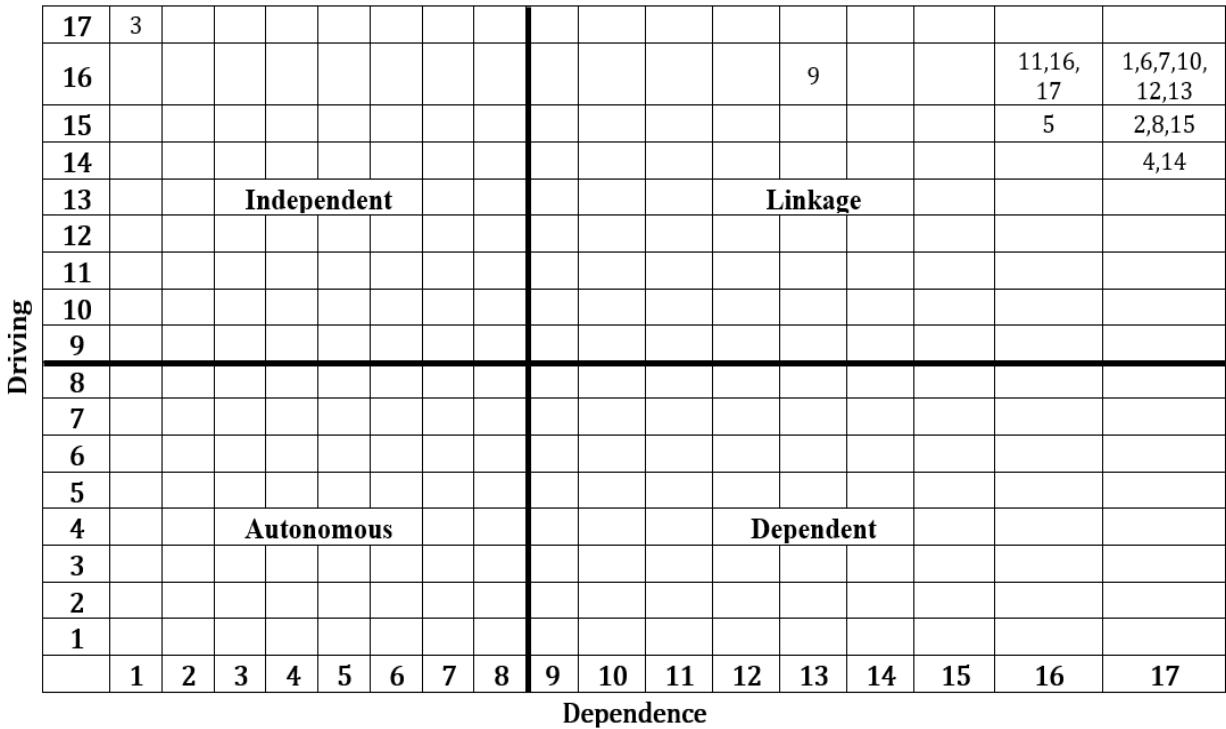


Figure 2. Driving-dependence diagram (Scale-centric).

Figure 2 (Driving-dependence diagram, i.e., scale-centric MICMAC analysis) shows that CSFs coded as 3 fall in the independent cluster, whereas all other CSFs, i.e., 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, fall in the linkage cluster. The dependent and autonomous clusters are empty.

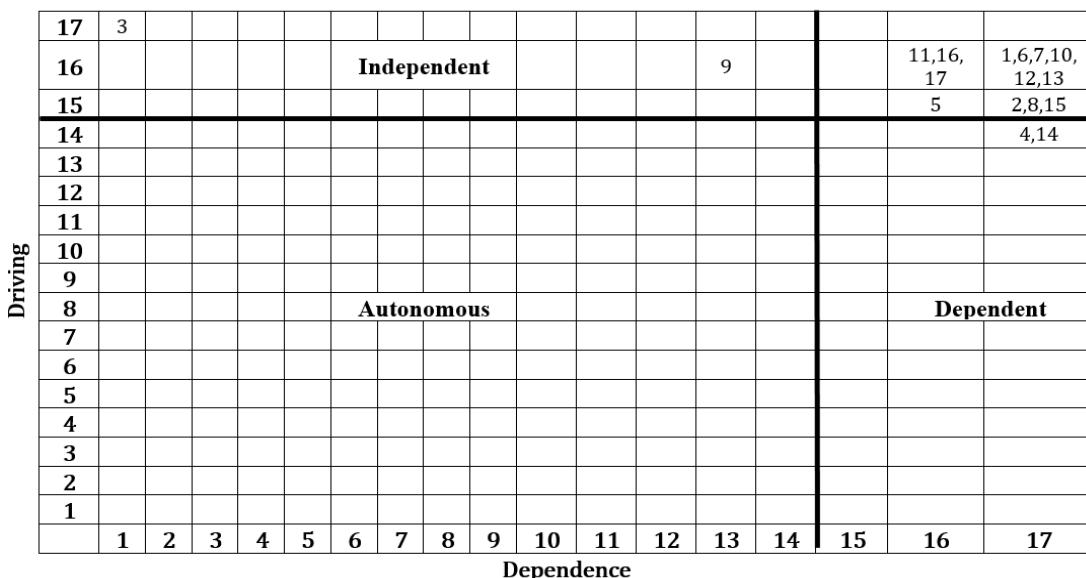


Figure 3. Driving-dependence diagram (Data-centric).

Figure 3 (Driving-dependence diagram, i.e., data-centric MICMAC analysis) shows that CSFs coded as 3 and 9 fall in the independent cluster; CSFs coded as 4 and 14 fall in the dependent cluster; and all other CSFs coded as 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, and 17 fall in the linkage cluster. The autonomous cluster is empty.

4. RESULTS

It can be recalled that the aim of the study is to analyze the CSFs in implementing marketing strategies in the FMCG sector in Pakistan, which is a vital and important phenomenon. The overall design of the study includes a literature review, ISM modeling, and MICMAC analysis. Therefore, the results are presented accordingly below. The literature review indicates that customers' digital engagement (1), data-driven decision making (2), brand visibility and awareness (3), marketing innovation (4), understanding consumer behavior (5), responsive customer service (6), integration of AI (7), adaptation (8), green marketing campaigns (9), marketing budgeting (10), handling customer relationships (11), handling customer and supplier coordination (12), netting market information (13), market-oriented organizational culture (14), market-based organizational learning (15), composition of team and diversity (16), and new business approaches (17) are critical success factors in implementing marketing strategies in the FMCG sector in Pakistan. The results of ISM modeling show that the CSFs, namely customers' digital engagement (1), data-driven decision making (2), marketing innovation (4), understanding consumer behavior (5), responsive customer service (6), integration of AI (7), adaptation (8), green marketing campaigns (9), marketing budgeting (10), handling customer relationships (11), handling customer and supplier coordination (12), netting market information (13), market-oriented organizational culture (14), and market-based organizational learning (15), are positioned at *Level I*. CSFs namely composition of team and diversity (16), and new business approaches (17) come at *Level II*. CSFs, namely brand visibility and awareness (3), come at *Level III*. Driving-dependence diagram, i.e., scale-centric MICMAC analysis, shows that CSFs namely brand visibility and awareness (3) fall in the independent cluster, whereas all other factors, i.e., customers' digital engagement (1), data-driven decision making (2), marketing innovation (4), understanding consumer behavior (5), responsive customer service (6), integration of AI (7), adaptation (8), green marketing campaigns (9), marketing budgeting (10), handling customer relationships (11), handling customer & supplier coordination (12), netting market information (13), market-oriented organization culture (14), market-based organization learning (15), composition of team and diversity (16), and new business approaches (17), fall in linkage. The dependent and autonomous clusters are empty. Data-centric MICMAC analysis shows that CSFs namely brand visibility and awareness (3), and green marketing campaigns (9), fall in the independent cluster; CSFs namely

marketing innovation (4), and market-oriented organization culture (14), fall in the dependent cluster; and all other CSFs, i.e., customers' digital engagement (1), data-driven decision making (2), understanding consumer behavior (5), responsive customer service (6), integration of AI (7), adaptation (8), marketing budgeting (10), handling customer relationships (11), handling customer & supplier coordination (12), netting market information (13), market-based organization learning (15), composition of team and diversity (16), and new business approaches (17), fall in the linkage cluster. Whereas, autonomous cluster is empty. In short, the results can be viewed in tabular form as Table 10.

Table 10. Summarized and Contrasted Results.

Result of the literature review		Results of MICMAC analysis				Results of ISM	Comments
Code	Factors	Driving	Dependence	Effectiveness	Cluster	Level	
1	Customers' digital engagement	16	17	-1	Linkage	I	
2	Data-driven decision making	15	17	-2	Linkage	I	
3	Brand visibility and awareness	17	1	16	Independent	III	Key Factor
4	Marketing innovation	14	17	-3	Linkage	I	
5	Understanding consumer behavior	15	16	-1	Linkage	I	
6	Responsive customer service	16	17	-1	Linkage	I	
7	Integration of AI	16	17	-1	Linkage	I	
8	Adaptation	15	17	-2	Linkage	I	
9	Green marketing campaigns	16	13	3	Linkage	I	
10	Marketing budgeting	16	17	-1	Linkage	I	
11	Handling customer relationships	16	16	0	Linkage	I	
12	Handling customer & supplier coordination	16	17	-1	Linkage	I	
13	Netting market information	16	17	-1	Linkage	I	
14	Market-oriented organization culture	14	17	-3	Linkage	I	
15	Market-based organization learning	15	17	-2	Linkage	I	
16	Composition of the team and diversity	16	16	0	Linkage	II	
17	New business approaches	16	16	0	Linkage	II	

5. DISCUSSION

Since the literature discourse is adopted for the extraction of CSFs, this has resulted in seventeen CSFs, which the authors do not claim to be complete, comprehensive, or exhaustive. The authors consider it a preliminary and indicative list that sets out the direction at least. ISM is employed as a modeling method that revealed that CSFs, namely customers' digital engagement (1), data-driven decision making (2), marketing innovation (4), understanding consumer behavior (5), responsive customer service (6), integration of AI (7), adaptation (8), green marketing campaigns (9), marketing budgeting (10), handling customer relationships (11), handling customer & supplier

coordination (12), netting market information (13), market-oriented organization culture (14), and market-based organization learning (15), come at *Level I*. CSFs, namely composition of team and diversity (16), and new business approaches (17), come at *Level II*. CSFs, namely brand visibility and awareness (3), come at *Level III*. ISM is a bottom-up model; the factors that occupy the bottom of the model are the most critical, the factors in the middle are moderately critical, and those at the top are least critical. In this way, the factor 'brand visibility and awareness (3)' comes at *Level III*, which is the most critical to address as a top priority by stakeholders. Factors such as 'composition of team and diversity (16)' and 'new business approaches (17)' occupy *Level II* and are therefore moderately critical, requiring second priority. All other factors occupy the top of the model and are comparatively less critical, needing to be addressed accordingly. The analysis is performed through MICMAC, i.e., scale-centric and data-centric MICMAC. In MICMAC analysis, the driving and dependence powers are plotted on a Cartesian plane, which is divided into four quadrants: independent, autonomous, dependent, and linkage. Factors with low driving and low dependence are classified as autonomous and are considered disconnected from the system under study; these are recommended for deletion from the study. Factors with high driving but low dependence are regarded as drivers or independent factors and are the most critical, requiring top priority. Factors with low driving but high dependence are considered as driven or dependent factors; these are the least critical and attract the lowest priority. Factors with high driving power and high dependence power are classified as linkage; they are agile, unsettled, unbalanced, and volatile, capable of affecting other factors and themselves, thus requiring utmost care from stakeholders. In the case at hand, the scale-centric MICMAC analysis indicates that CSFs, namely brand visibility and awareness (3), fall in the independent quadrant, making them the most critical. All other factors fall in the linkage quadrant, indicating they are agile, unsettled, unbalanced, and volatile. The autonomous and dependent clusters are empty, suggesting all factors are relevant and part of the system. The data-centric MICMAC analysis shows that CSFs, namely brand visibility and awareness (3), and green marketing campaigns (9), fall in the independent quadrant, thus being the most critical. CSFs such as marketing innovation (4) and market-oriented organization culture (14) fall in the dependent quadrant, making them the least critical. The remaining factors fall in the linkage quadrant, indicating they are agile, unsettled, unbalanced, and volatile, with the capability to influence other factors and themselves. The autonomous cluster is empty, confirming that all factors are important and relevant.

6. CONCLUSION

Studying CSFs in the FMCG sector is a vital phenomenon for understanding key drivers of success and leveraging them to achieve sustainable growth and a competitive advantage. Therefore, the study aims to analyze CSFs in implementing marketing strategies in the FMCG sector in Pakistan. The design consists of a review of literature, primary data collection, modeling, and analysis. The modeling method used is ISM, and the analysis method is scale/data-centric MICMAC. Seventeen CSFs have been identified through a review of the literature (Table 1). CSFs coded 1 to 15 occupy *Level I* in the ISM model. CSFs coded as 16 and 17 are at *Level II*. The CSF coded as 3 is at *Level III*. Scale-centric MICMAC analysis shows that CSFs coded as 3 fall in the independent cluster, whereas all other factors, i.e., 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, fall in the linkage cluster. The dependent and autonomous clusters are empty. Data-centric MICMAC analysis shows that CSFs coded as 3 and 9 fall in the independent cluster; factors coded as 4 and 14 fall in the dependent cluster; and all other factors coded as 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, and 17 fall in the linkage cluster. The autonomous cluster is empty. The study has philosophical, theoretical, and profound practical implications for FMCG firms, investment analysts, investors, managers, political governments, and policymakers because it offers new information about the inter-factor relationships and provides deeper insights to an array of stakeholders. Stakeholders should address the factors at the bottom of the model as a priority in policy formulation. When implementing policies, they must be cautious with linkage factors due to their dynamic effects. The study also has some noteworthy limitations. Firstly, it is based on factors extracted from limited literature. The list of CSFs can be made more robust. Secondly, the study is qualitative,

and the results need to be corroborated by certain statistical methods. Thirdly, evidence is collected from Pakistan only (one country); in order to generalize the results, the study must be replicated in different contexts.

Funding: This study received no specific financial support.

Institutional Review Board Statement: Not applicable.

Transparency: The authors state that the manuscript is honest, truthful, and transparent, that no key aspects of the investigation have been omitted, and that any differences from the study as planned have been clarified. This study followed all writing ethics.

Competing Interests: The authors declare that they have no competing interests.

Authors' Contributions: All authors contributed equally to the conception and design of the study. All authors have read and agreed to the published version of the manuscript.

REFERENCES

Ali, S. S., & Dubey, R. (2014). Redefining retailer's satisfaction index: A case of FMCG market in India. *Procedia-Social and Behavioral Sciences*, 133, 279-290. <https://doi.org/10.1016/j.sbspro.2014.04.194>

Anselmsson, J., & Bondesson, N. (2015). Brand value chain in practise; the relationship between mindset and market performance metrics: A study of the Swedish market for FMCG. *Journal of Retailing and Consumer Services*, 25, 58-70. <https://doi.org/10.1016/j.jretconser.2015.03.006>

Attri, R., Dev, N., & Sharma, V. (2013). Interpretive structural modelling (ISM) approach: An overview. *Research Journal of Management Sciences*, 2(2), 3-8.

Azamat, K., Galiya, J., Bezhani, R., & Nurdana, Z. (2023). The impact of intangible assets on the value of FMCG companies worldwide. *Journal of Innovation & Knowledge*, 8(1), 100330. <https://doi.org/10.1016/j.jik.2023.100330>

Beverland, M. B., Wilner, S. J. S., & Micheli, P. (2015). Reconciling the tension between consistency and relevance: Design thinking as a mechanism for brand ambidexterity. *Journal of the Academy of Marketing Science*, 43(5), 589-609. <https://doi.org/10.1007/s11747-015-0443-8>

Bocken, N. M. P., Harsch, A., & Weissbrod, I. (2022). Circular business models for the fastmoving consumer goods industry: Desirability, feasibility, and viability. *Sustainable Production and Consumption*, 30, 799-814. <https://doi.org/10.1016/j.spc.2022.01.012>

Bogomolova, S., Anesbury, Z., Lockshin, L., Kapulski, N., & Bogomolov, T. (2019). Exploring the incidence and antecedents of buying an FMCG brand and UPC for the first time. *Journal of Retailing and Consumer Services*, 46, 121-129. <https://doi.org/10.1016/j.jretconser.2017.05.010>

Bukhari, F., Hussain, S., Ahmed, R. R., Mubasher, K. A., Naseem, M. R., Rizwanullah, M., . . . Ahmed, F. (2023). Consumers' purchase decision in the context of western imported food products: Empirical evidence from Pakistan. *Helijon*, 9(10), e20358. <https://doi.org/10.1016/j.helijon.2023.e20358>

Chowdhury, S. A., Fuad, M. N., Nipa, M. N., & Nath, A. (2024). Exploring the challenges and opportunities of digital marketing adoption in the multinational FMCG sector. *Corporate Sustainable Management Journal*, 2(1), 39-48. <https://doi.org/10.26480/csmj.01.2024.39.48>

Clayton, M. J. (1997). Delphi: A technique to harness expert opinion for critical decision-making tasks in education. *Educational Psychology*, 17(4), 373-386. <https://doi.org/10.1080/0144341970170401>

Dantas, R., Sabir, I., Martins, J. M., Majid, M. B., Rafiq, M., Martins, J. N., & Rana, K. (2023). Role of green and multisensory packaging in environmental sustainability: Evidence from FMCG sector of Pakistan. *Cogent Business & Management*, 10(3), 2285263. <https://doi.org/10.1080/23311975.2023.2285263>

Du, R. Y., Netzer, O., Schweidel, D. A., & Mitra, D. (2020). Capturing marketing information to fuel growth. *Journal of Marketing*, 85(1), 163-183. <https://doi.org/10.1177/0022242920969198>

Gardas, R., & Narwane, S. (2024). An analysis of critical factors for adopting machine learning in manufacturing supply chains. *Decision Analytics Journal*, 10, 100377. <https://doi.org/10.1016/j.dajour.2023.100377>

Godet, M. (1986). Introduction to la prospective: Seven key ideas and one scenario method. *Futures*, 18(2), 134-157. [https://doi.org/10.1016/0016-3287\(86\)90094-7](https://doi.org/10.1016/0016-3287(86)90094-7)

Haenlein, M. (2017). How to date your clients in the 21st century: Challenges in managing customer relationships in today's world. *Business Horizons*, 60(5), 577-586. <https://doi.org/10.1016/j.bushor.2017.06.002>

Hoffman, D. L., Moreau, C. P., Stremersch, S., & Wedel, M. (2021). The rise of new technologies in marketing: A framework and outlook. *Journal of Marketing*, 86(1), 1-6. <https://doi.org/10.1177/00222429211061636>

Hollebeek, L. D., Kumar, V., Srivastava, R. K., & Clark, M. K. (2023). Moving the stakeholder journey forward. *Journal of the Academy of Marketing Science*, 51(1), 23-49. <https://doi.org/10.1007/s11747-022-00878-3>

Jain, P., & Hudnurkar, M. (2022). Sustainable packaging in the FMCG industry. *Cleaner and Responsible Consumption*, 7, 100075. <https://doi.org/10.1016/j.clrc.2022.100075>

Jena, J., Sidharth, S., Thakur, L. S., Kumar Pathak, D., & Pandey, V. C. (2017). Total interpretive structural modeling (TISM): Approach and application. *Journal of Advances in Management Research*, 14(2), 162-181. <https://doi.org/10.1108/JAMR-10-2016-0087>

Kamakela, J. S., Callychurn, D., & Hurreeram, D. (2023). Assessing digital technology and analytics for risk management: Focus on Fast Moving Consumer Goods (FMCG) manufacturing firms in Mauritius. *Materials Today: Proceedings*. <https://doi.org/10.1016/j.matpr.2023.02.177>

Khalil, S., & Villace, T. (2021). Marketing-quality interface: An empirical analysis of FMCG customers. *Cogent Business & Management*, 8(1), 1885574. <https://doi.org/10.1080/23311975.2021.1885574>

Khan, S., & Khan, M. S. A. (2013). Conceptualized model of Green IT purchasing enablers—an application of Delphi technique and interpretive structural modeling. *Business Sciences International Research Journal*, 1(1), 24-37.

Li, G., Huang, D., Sun, C., & Li, Y. (2019). Developing interpretive structural modeling based on factor analysis for the water-energy-food nexus conundrum. *Science of the Total Environment*, 651, 309-322. <https://doi.org/10.1016/j.scitotenv.2018.09.188>

Longoni, C., & Cian, L. (2020). Artificial intelligence in utilitarian vs. hedonic contexts: The "word-of-machine" effect. *Journal of Marketing*, 86(1), 91-108. <https://doi.org/10.1177/0022242920957347>

Lynch, J., & West, D. (2017). Agency creativity: Teams and performance: A conceptual model links agency teams' knowledge utilization, agency creativity, and performance. *Journal of Advertising Research*, 57(1), 67-81. <https://doi.org/10.2501/JAR-2017-006>

Ma, X., Park, C., & Moultrie, J. (2020). Factors for eliminating plastic in packaging: The European FMCG experts' view. *Journal of Cleaner Production*, 256, 120492. <https://doi.org/10.1016/j.jclepro.2020.120492>

McCarthy, D. M., Fader, P. S., & Hardie, B. G. S. (2017). Valuing subscription-based businesses using publicly disclosed customer data. *Journal of Marketing*, 81(1), 17-35. <https://doi.org/10.1509/jm.15.0519>

Meire, M., Hewett, K., Ballings, M., Kumar, V., & Van den Poel, D. (2019). The role of marketer-generated content in customer engagement marketing. *Journal of Marketing*, 83(6), 21-42. <https://doi.org/10.1177/0022242919873903>

Meyer, J.-H., González, E. M., & Lopez-Lomelí, M. A. (2022). Better support for supportive jobs. How to improve brand performance through better compensation and training for in-store merchandisers. *Journal of Retailing and Consumer Services*, 64, 102750. <https://doi.org/10.1016/j.jretconser.2021.102750>

Moorman, C., & Day, G. S. (2016). Organizing for marketing excellence. *Journal of Marketing*, 80(6), 6-35. <https://doi.org/10.1509/jm.15.0423>

Mukhopadhyay, S., Singh, R. K., & Jain, T. (2024). Developing big data enabled marketing 4.0 framework. *International Journal of Information Management Data Insights*, 4(1), 100214. <https://doi.org/10.1016/j.ijimedi.2024.100214>

Niyas, N., & Kavida, V. (2022). Impact of financial brand values on firm profitability and firm value of Indian FMCG companies. *IIMB Management Review*, 34(4), 346-363. <https://doi.org/10.1016/j.iimb.2023.01.001>

Oraman, Y., Azabagaoglu, M. O., & Inan, I. H. (2011). The firms' survival and competition through global expansion: A case study from food industry in FMCG sector. *Procedia-Social and Behavioral Sciences*, 24, 188-197. <https://doi.org/10.1016/j.sbspro.2011.09.021>

Perdikakis, A., Shukla, A., & Kiritsis, D. (2015). Optimize energy efficiency in the supply chain of FMCGs with the use of semantic web technologies. *Procedia Engineering*, 132, 1112-1119. <https://doi.org/10.1016/j.proeng.2015.12.603>

Qureshi, M. A., Qureshi, J. A., Thebo, J. A., Shaikh, G. M., Brohi, N. A., & Qaiser, S. (2019). The nexus of employee's commitment, job satisfaction, and job performance: An analysis of FMCG industries of Pakistan. *Cogent Business & Management*, 6(1), 1654189. <https://doi.org/10.1080/23311975.2019.1654189>

Rehman, M., Zelin, T., & Hussain, T. (2025). Influence of consumer satisfaction on brand allegiance: An empirical investigation in Pakistan's safety and luxury automobile sector. *Acta Psychologica*, 252, 104667. <https://doi.org/10.1016/j.actpsy.2024.104667>

Salau, O., Osibanjo, A., Adeniji, A., Ojebola, O., Oludayo, O., Falola, H., & Atolagbe, T. (2018). Datasets on employee value proposition (EVP) and performance of selected fast moving consumer goods (FMCGs) firms in Nigeria. *Data in Brief*, 19, 1907-1911. <https://doi.org/10.1016/j.dib.2018.06.027>

Sardana, D., Cavusgil, E., & Gupta, N. (2021). The growing popularity of spiritual brands: What drives purchase intent? *International Business Review*, 30(4), 101777. <https://doi.org/10.1016/j.ibusrev.2020.101777>

Shen, L., Song, X., Wu, Y., Liao, S., & Zhang, X. (2016). Interpretive structural modeling based factor analysis on the implementation of emission trading system in the Chinese building sector. *Journal of Cleaner Production*, 127, 214-227. <https://doi.org/10.1016/j.jclepro.2016.03.151>

Sinkula, J. M. (1994). Market information processing and organizational learning. *Journal of Marketing*, 58(1), 35-45. <https://doi.org/10.1177/002224299405800103>

Srinivasan, S., & Lu, W. F. (2014). Development of a supporting tool for sustainable FMCG packaging designs. *Procedia CIRP*, 15, 395-400. <https://doi.org/10.1016/j.procir.2014.06.079>

Sriram, S., & Kalwani, M. U. (2007). Optimal advertising and promotion budgets in dynamic markets with brand equity as a mediating variable. *Management Science*, 53(1), 46-60. <https://doi.org/10.1287/mnsc.1060.0604>

Thain, G., & Bradley, J. (2014). *FMCG: The power of fast-moving consumer goods* (1st ed.). Sarasota, FL, USA: Design Publishing.

Wang, C., Fu, X., Li, C., Liu, Z., Wang, S., Chen, T., & Jia, L. (2024). Trust in nutrition, subjective norms and urban consumers' purchase behavior of quinoa products: Explanation based on preference heterogeneity. *Frontiers in Nutrition*, 11, 1511205. <https://doi.org/10.3389/fnut.2024.1511205>

Wang, Y., Lee, J., Fang, E. E., & Ma, S. (2017). Project customization and the supplier revenue-cost dilemmas: The critical roles of supplier-customer coordination. *Journal of Marketing*, 81(1), 136-154. <https://doi.org/10.1509/jm.15.0300>

Warfield, J. N. (1973). Binary matrices in system modeling. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-3(5), 441-449. <https://doi.org/10.1109/TSMC.1973.4309270>

Warfield, J. N. (1974). Toward interpretation of complex structural models. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-4(5), 405-417. <https://doi.org/10.1109/TSMC.1974.4309336>

Yang, A., Martin, E. B., Montague, G. A., & Fryer, P. J. (2008). Towards improved cleaning of FMCG plants: A model-based approach, Computer Aided Chemical Engineering. In (Vol. 25, pp. 1161-1166). Oxford, UK: Elsevier.

Views and opinions expressed in this article are the views and opinions of the author(s), Humanities and Social Sciences Letters shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/ arising out of the use of the content.