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ABSTRACT 

The main aim of this paper is devoted to derive some relations of Gegenbauer matrix polynomials of two 

variables. Volterra integral equation and a new representation of these matrix polynomials are given here. 

We introduce new generalized various forms of Gegenbauer matrix polynomials of two and three matrices 

by using the method of integral transforms to Hermite matrix polynomials. Furthermore, families of 

generating matrix functions are obtained and their applications are presented.  
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Contribution/ Originality 

This study is one of very few studies which have been investigated to new families of 

Gegenbauer matrix polynomials of two variables with two and three matrices is introduced using 

integral transform method and allow the derivation of a wealth of relations involving these 

matrix polynomials, and discuss its various special cases and their applications are presented. 

These results allow us to note that the use of the method of the integral representation is a fairly 

important tool of analysis and can be usefully extended to other families of Gegenbauer matrix 

polynomials which is a problem for further work. 

 

1. INTRODUCTION AND DEFINITIONS  

The study of special matrix polynomials is important due to their applications in various 

critical areas of statistics, physics, engineering and applied mathematics [1, 2]. Orthogonal 

matrix polynomials are becoming more and more relevant in the two preceding decades. Only 
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very recently, some results in the theory of classical orthogonal polynomials are extended to 

orthogonal matrix polynomials; see [3-24]. 

In mathematics, Gegenbauer polynomials or ultraspherical polynomials )(xCn


 are 

orthogonal polynomials on the interval 1,1][  with respect to the weight function 2

1

2 )(1





x . 

They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of 
Jacobi 

polynomials. They are named after Leopold Gegenbauer. 

In the scalar case, the Gegenbauer polynomials are defined by the generating function (see 

Andrews [25] pp.185 eq. (5.67) and Temme [26] pp.155 eq. (6.45))  

1,|<|1,||;)(=)2(1=),(
0=

2 txtxCtxttxF n

n

n

 


 
 

where 
2

1
>  . By expanding the function 

 )2(1=),( 2txttxF  in a binomial series 

and we know that )(tF  has a convergent power series 
0

n

n

n

c t




  for 1|<| t . 

 

Motivated by the work of Dattoli, et al. [27] who have used the link between Hermite and 

Gegenbauer polynomials to introduce generalized forms of Gegenbauer polynomials where the 

strategy of generalization outlined in Dattoli, et al. [27] benefits from the variety of existing 

Hermite matrix polynomials. The structure of this paper is as follows: In Section 2 summarizes 

previous results of Gegenbauer matrix polynomials of two variables and includes a new property 

of these matrix polynomials and gives a new generalization of the Gegenbauer matrix 

polynomials by means of the hypergeometric matrix function. Section 3, we build the Volterra 

integral equation of Gegenbauer matrix polynomials of two variables. In Section 4, we introduce a 

generalization for Gegenbauer matrix polynomials of two and three matrices by modifying the 

integral transform and give an explicit expression and generating matrix functions, which allow 

us to express them in terms of Hermite matrix polynomials. Some special cases of the results 

presented in this study are also indicated.  

In this section, we will give some useful definitions, fact and lemmas. Throughout this paper, 

if A  is a matrix in 
NNC 

, its spectrum )(A  denotes the set of all the eigenvalues of A . The 

zero matrix or null matrix of 
NNC 

 will be denoted by 0 . Furthermore, the identity matrix of 
NNC 

 will be denoted by I .  

 

Fact 1.1. (Dunford and Schwartz [28]) 

If )(zf  and )(zg  are holomorphic functions of the complex variable z , which are defined in an 

open region   of the complex plane, and A , B  are matrices in 
NNC 

 with )(A  and 

)(B , such that BAAB = , then from the properties of the matrix functional calculus, it follows 
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that  

).()(=)()( AfBgBgAf                                      (1.1) 

Definition 1.2. (Jódar and Cortés [29]) 

Let A  be a matrix in 
NNC 

, the Pochhammer symbol or shifted factorial is defined  
1

0( ) = ( )( 2 )...( ( 1) ) = ( ) ( ); 1, ( ) = .nA A A I A I A n I A nI A n A I          (1.2) 

 

Lemma 1.3. (Jódar and Cortés [29]) 

If y  is a complex variable with 1<y  and a  is a complex variable, then 

   
  nn

n

a
y

n

a
yag

!
=1=

0=


  is holomorphic function in C . Therefore, applying the 

holomorphic functional calculus [28] to any matrix A  in 
NNC 

, the image of g , acting on A  yields 

   
 

1,<;
!

=1=
0=

yy
n

A
yAg nn

n

A





                         (1.3) 

 where nA)(  is defined by (1.2).  

 

Lemma 1.4. (Lancaster [30]) 

If A  denotes any matrix norm for which 1=I  and if A  is a matrix in 
NNC 

 and 1<A  

then 
1)(  AI  exists:  

....=)( 54321   AAAAAIAI (1.4) 

If 0D  is the complex plane cut along the negative real axis and )(log z  denotes the principal 

logarithm of z , then 2

1

z  represents ))(log
2

1
(exp z . If A  is a matrix in 

NNC 
 with 

0)( DA  , then ))(log
2

1
(exp==2

1

AAA  denotes the image by 

))(log
2

1
(exp==2

1

zzz  of the matrix functional calculus is acting on the matrix A .  

Definition 1.5. (Jódar and Company [31]) 

Let A  be a positive stable matrix in 
NNC 

 such that  

).(eigenvalueevery for 0,>)( AzzRe                   (1.5) 

 Then the Hermite matrix polynomials are defined by  
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.)2(
)!2(!

1)(
!=),( 2

]
2

1
[

0=

kn
k

n

k

n Ax
knk

nAxH 






                  (1.6) 

Definition 1.6. (Jódar, et al. [32]) 

Let A  be a matrix in 
NNC 

 satisfying the condition  

{0}.allfor )()
2

(  ZzA
z

                       (1.7) 

 Then the Gegenbauer matrix polynomials are defined by  

.)(
)!2(!

)(21)(
=)(

2
]

2

1
[

0=

kn

knk
n

k

A

n A
knk

x
xC 






                        (1.8) 

Definition 1.7. (Jódar and Cortés [2]) 

Let A  be a positive stable matrix in 
NNC 

, then Gamma matrix function )(A  is defined by  

).ln)((exp=;=)(
0

tIAtdtteA IAIAt  


 (1.9) 

Notation 1.8. (Defez and Jódar [10]) 

By using (1.2), we have the relations  

.,0
)!(

!1)(
=)(

,))(
2

1
()

2

1
(2=)(

,)()(=)(

2

2

nkI
kn

n
nI

IAAA

nIAAA

k

k

kk

k

k

knkn










                     (1.10) 

  We conclude this section recalling a result related to the rearrangement of the terms in an 

iterated series. If ),( nkA  and ),( nkB  are matrices in 
NNC 

 for 0n , 0k , then in an 

analogous way to the proof of Lemma 11 (see,Defez and Jódar [1]), it follows that  

=0 =0 =0 =0

[ ]
2

=0 =0 =0 =0

[ ]

=0 =0 =0 =0

( , ) = ( , ),

( , ) = ( , 2 ),

( , ) = ( , ); .

n

n k n k

n

n k n k

n

m

n k n k

B k n B k n k

A k n A k n k

A k n A k n mk m N

  

  

  





 

 

 

 

                       (1.11) 

 Similarly to (1.11), we can write  

=0 =0 =0 =0

1
[ ]

2

=0 =0 =0 =0

[ ]

=0 =0 =0 =0

( , ) = ( , ),

( , ) = ( , ),

( , ) = ( , );

n

n k n k

n
n

n k n k

n

m

n k n k

B k n B k n k

A k n A k n k

A k n A k n mk m N

  

 

  





 

 

 

 

                       (1.12) 
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where [ ]x denotes the greatest integer in x . 

 Recently, in Shehata [33], a new extension of Gegenbauer matrix polynomials with two 

variables was presented. To defined it, the starting point was the following formula   

1.|<|1,||1,||;),(=)2(1=),,,(
0=

2 tyxtyxCytxtAtyxF nA

n

n

A  



         (1.13) 

 This formula turns out to be the key for the definition and development of the properties 

mentioned in the paper [33], to guarantee that (1.13) is term-wise differentiable with respect to 

its variables x , y  and t . However, we will see that formula (1.13) is correct with the addition of 

the following conditions 1|<2| 2ytxt   and < 1
2

yt

x
. This is to clarify the correct definition 

of the generating matrix function for Gegenbauer matrix polynomials.  

 

2.PROPERTIES OF GEGENBAUER MATRIX POLYNOMIALS 

Let A  be a matrix in 
NNC 

 satisfying the spectral condition )()
2

1
( Az 

{0} Zz . If 1r  and 2r  are the roots of the quadratic equation 0=21 2ytxt   and r  

is the minimum of the set },{ 21 rr , then the matrix function ),,,( AtyxF  regarded as a function 

of t , is analytic in the disk rt |<|  for every real number in 1|| x  and 1|| y . Therefore, 

Gegenbauer matrix polynomials of two variables are defined by the generating matrix function 

[33]  

rtyxtyxCytxtAtyxF nA

n

n

A |<|1,||1,||;),(=)2(1=),,,(
0=

2  



(2.1) 

 or, equivalently to the previous definition to generating matrix function in (1.13). Then, the 

Gegenbauer matrix polynomials of two variables are defined by  

.)(
)!2(!

)(21)(
=),(

2
]

2

1
[

0=

kn

knkk
n

k

A

n A
knk

xy
yxC 






                                (2.2) 

 It is clear that  

0 1

2

2

( , ) = , ( , ) = 2 ,

(2 )
( , ) = 2 ( ) and ( ,0) = ( ) .

!

A A

n
A A

n n

C x y I C x y xA

x
C x y x A A I yA C x A

n
 

 

 Replacing x  by 
y

x
 and t  by yt  in (2.1) and in view of (1.8), we get  
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2

=0

(1 2 ) = ( ) .A A n

n

n

x
xt yt C t y

y




 
    

 
                      (2.3) 

 Now, comparing (2.1) with (2.3), we obtain  

=0 =0

( , ) = ( ) .A n A n

n n

n n

x
C x y t C t y

y

   
  
 

   

 Equating the Coefficients of 
nt , we get  

2( , ) = .
n

A A

n n

x
C x y y C

y

 
  
 

                                              (2.4) 

 Replacing x  by x  and t  by t  in (2.1), the left side remains unchanged, we obtain  

).,(1)(=),( yxCyxC A

n

nA

n                                                (2.5) 

 For 1=x  and 1=y , we have  

1.|<|(1,1);=)(1
0=

2 tCtt A

n

n

n

A 


  

 By (1.3) to obtain  

.)(2
!

1
=(1,1) n

A

n A
n

C (2.6) 

 For 0=x , it follows  

).(0,=)(1
0=

2 yCtyt A

n

n

n

A 


  

 Also, by (1.3) one gets  

1.|<|;)(
!

1)(
=)(1 22

0=

2 ytAty
n

yt n

nn
n

n

A 
 




 

 Therefore, we have  

0.=)(0,,)(
!

1)(
=)(0, 122 yCAy

n
yC A

nn

n
n

A

n 


                          (2.7) 

 From (2.7) one gets  

.)(
!

1)2(
=)(0,0,=)(0, 122 n

n
n

A

n

A

n IAAy
n

yC
x

yC
x













      (2.8) 

 For 1=y , (2.4) reduces to  

)(=,1)( xCxC A

n

A

n                                                                         (2.9) 
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 where )(xC A

n  is well known Gegenbauer matrix polynomials [15, 34]. 

Note that the Gegenbauer's matrix polynomials of two variables are the solutions of the 

following matrix partial differential equation:  

2
2

2
( ) ( , ) (2 ) ( , ) (2 ) ( , ) = 0, 0.A A A

n n ny x C x y x A I C x y n A nI C x y n
x x

 
     

 
   (2.10) 

 and satisfy the three terms matrix recurrence relationship:  

2);,()2)((2),()1)((2=),( 21   nyxCInAyyxCInAxyxnC A

n

A

n

A

n .      (2.11) 

We recall that for the Gegenbauer matrix polynomials of two variables the following 

relations are obtained  

 0=),(21)(),( 1 yxC
y

yxC
x

A

rnr

r
rrA

nr

r













                              (2.12) 

 and  

 

).,()(1)(=),(

),,()(2=),(

2 yxCAyxC
y

yxCAyxC
x

rIA

rnr

rA

nr

r

rIA

rnr

rA

nr

r
















                            (2.13) 

 From (2.1) and using the relations (1.10) with 1|<| yt  and 1<
)(1

)(2

2yt

yxt




, we have  

2 2

2

(2 2 )

=0 =0 =0

1

2 2

=0 =0

=0 =0

2 ( )
(1 2 ( ) ) = (1 ) (1 )

(1 )

( ) 2 ( ) ( ) (2 2 ) 2 ( )
= (1 ) = ( )

! ! !

( ) (2 ) [(2 ) ] 2 ( )
= ( )

! !

( ) (2 ) (2
=

A A A

k k k k k k

A kI nk k n

k n k

k k

n n kk n k k

n k

n
k n

n k

t x y
xt t y t y

t y

A t x y A A kI t x y
t y t y

k n k

A A A x y
y t

n k

A A

  

  
 

 





   



  




 




1

2

1

=0 =0

) [(2 ) ] 2 ( )
( )

( )! !

1
( 1) ( ) (2 ) (2 ) [( ) ]

2 2
= ( )

! !

k k

n k nk k

k

k

k n k k
n

n n

n k

A nI A x y
y t

n k k

x y
nI A A nI A I

y
y t

n k









 



 
      

 


 

 

These results are summarized below.  

Theorem 2.1.  

Let A  be a matrix in 
NNC 

 such that A  satisfy the condition )()
2

1
( Az  , 
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{0} Zz  with 1<
2 y

xy 
. Then the Gegenbauer matrix polynomials of two variables have 

the following hypergeometric matrix representation:  

.
2

;
2

1
;,2

!

)(2
=),( 12

2













 


y

xy
IAnIAnIF

n

yA
yxC

n

nA

n
      (2.14) 

Definition 2.2.(Defez and Jódar [1]) 

Let B  be a matrix in 
NNC 

 such that  

 0.integersallformatrixinvertibleanis  nnIB
     

(2.15) 

 Then, we define a new generalized Gegenbauer matrix polynomials of two matrices by using 

the hypergeometric matrix function in the form:  

 

1
[ ]
2

2

,

=0

( 1)
( , ; ) = (2 )

!( 2 )!

n
k

A n k

n n k n k

k

C x y B x A
k n k








 B               (2.16) 

 where  

 ,)(
)!(!

)!(!
=);;,(!=

0=

12,

ik

i

k

i

k

kn yB
iki

ink
ynIBkIFyn 




 B          (2.17) 

 where A  and B  are matrices in 
NNC 

 such that A  satisfies the condition (1.7), B  satisfies 

the condition (2.15) and AB BA .  

When B  is the zero matrix, then the generalized Gegenbauer matrix polynomials of 

two variables reduce to  

 ),(=;0),( yxCyxC A

n

A

n                                                                   (2.18) 

 From (2.17), we can write in the following integral representation  

 
1 ( )

,
0 0

= ( ) 1 .

k

k t u n B I

n k

yu
y B e t u dtdu

t

 
     

  
 

 B              (2.19) 

Theorem 2.3. 

Let A  and B  be matrices in 
NNC 

 such that A  satisfy the condition (1.7) and B  satisfy the 

condition (2.15). Then the generalized Gegenbauer matrix polynomials of two variables have the following 

integral representation:  

1 ( )

0 0
( , ; ) = ( ) , (1 ) .A t u n B I A

n n

yu
C x y B B e t u C x y dtdu

t

 
     

  
 

                (2.20) 

Proof. Using (2.16), (2.17) and (2.19), we obtain (2.20). Thus the proof is completed. 
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The purpose of the next section is to introduce the Gegenbauer matrix polynomials of two 

variables by means of a Volterra integral equation.  

 

3.VOLTERRA INTEGRAL EQUATION 

Replacing n  by n2  in Eq. (2.10), we write the matrix differential equation  

2
2

2 2 22
( ) ( , ) (2 ) ( , ) 2 (2 2 ) ( , ) = 0.A A A

n n ny x C x y x A I C x y n A nI C x y
x x

 
    

 
  (3.1) 

 From the equation (2.17), one gets  

 ).,()(4=),(2=),( 2

221222

2

yxCIAAyxC
x

AyxC
x

IA

n

IA

n

A

n







 







      (3.2) 

 Integrating (3.2) and using (2.7) and (2.8), we get  

 dzyzCIAAyxC
x

IA

n

x
A

n ),()(4=),( 2

22
0

2







                   (3.3) 

 and  

.)(
!

1)(
),()()(4=),( 2

22
0

2 n

n
n

IA

n

x
A

n Ay
n

dzyzCzxIAAyxC


 

     (3.4) 

 Using (3.2)-(3.4) in (3.1) gives  

0.=)2)((
1)!(

1)(
),()()2(22

),()(2),()(

2

22
0

2

22
0

2

22

2

n

n
n

IA

n

x

IA

n

x
IA

n

IAnIAy
n

dzyzCzxnIAn

dzyzCIAxyxCxy
























(3.5) 

 From (3.5) and we replace n  by 1n , we get Replacing n  by 1n  in Eq. (3.5), we have  

 

0.=)2)(1)((
!

1)(

),()()1)(1)(4(

),()(2),()(

1

1
1

2

2
0

2

2
0

2

2

2























n

n
n

IA

n

x

IA

n

x
IA

n

IAInAy
n

dzyzCzxInAn

dzyzCIAxyxCxy

             (3.6) 

 Next, the matrix differential equation (2.4) with 12= nn  can be expressed as  

 

0.=),()1)(21)(2(2

),()(2),()(

12

12122

2
2

yxCInAn

yxC
x

IAxyxC
x

xy

A

n

A

n

A

n
















(3.7) 

 The formula (2.6) gives  

 ).,()(4=),(2=),( 2

122122

2

yxCIAAyxC
x

AyxC
x

IA

n

IA

n

A

n







 







(3.8) 

 By integrating (3.8) with the help of (2.12) and (2.13) we get  

 .),()(4=),( 2

12
0

12 dzyzCIAAyxC
x

IA

n

x
A

n



 



                                 (3.9) 

 and  
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.)(
!

1)2(
),()()(4=),( 2

12
0

12 n

n
n

IA

n

x
A

n AAxy
n

dzyzCzxIAAyxC


 

        (3.10) 

 By virtue of Eqs. (3.8)-(3.10), the matrix differential equation (3.7) becomes  

 

0=)2)()
2

1
((

!

)
2

1
(1)2(

),()()1)(21)(2(2

),()(2),()(

2

12
0

2

12
0

2

12

2

n

n

n

IA

n

x

IA

n

x
IA

n

IAInAAxy
n

n

dzyzCzxInAn

dzyzCIAxyxCxy


























              (3.11) 

 which on replacing n  by 1n  in Eq. (3.11) implies  

 

0.=)2)()
2

3
((

1)!(

)
2

3
(1)2(

),()()3)(23)(2(2

),()(2),()(

1

1

1

2

12
0

2

12
0

2

12

2


































n

n

n

IA

n

x

IA

n

x
IA

n

IAInAAxy
n

n

dzyzCzxInAn

dzyzCIAxyxCxy

       (3.12) 

 Combining Eqs. (3.6) and (3.12) demonstrates in the following result:  

 

Theorem-3.1.  

          Let A  be a matrix in satisfying the condition (1.7). The Volterra integral equation of the 

Gegenbauer matrix polynomials of two variables is given as  

 

0,=)2)(1)
2

1
(()(2

1)!(

1)
2

1
(1)(

),()()2)(2)(2(

),()(2),()(

1

12

1

2

0

2

0

22


























m

mmn

m

IA

n

x

IA

n

x
IA

n

IAInAyxA
m

n

dzyzCzxInAn

dzyzCIAxyxCxy

(3.13) 

 where mn 2= .  

In the next section, we introduce new families of Gegenbauer matrix polynomials of two and 

three matrices by using the integral representation method. The generating matrix functions, 

matrix partial differential equation and the series definition for the new families of Gegenbauer 

matrix polynomials are derived. We also give here the finite summation formula involving their 

Gegenbauer matrix polynomials and discuss its various special cases.  

 

4.CONNECTIONS BETWEEN GEGENBAUER AND HERMITE MATRIX 

POLYNOMIALS 

As already remarked, firstly, a new generalized form of the Gegenbauer matrix polynomials 

of two variables is introduced by using the integral representation method  
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1 ( 1)

0

1
( , ; ) = ( ) , ,

!

A t A n I

n n

y
C x y B A e t H x B dt

n t


     

  
 

            (4.1) 

 where Hermite matrix polynomials of two variables ),,( ByxHn  defined by Batahan [35]  

 0.,)2(
)!2(!

1)(
!=),,( 2

]
2

1
[

0=




  nBx
knk

y
nByxH kn

kk
n

k

n             (4.2) 

 It is evident that in view of the relations  

 

2, , = ( , , ),

, , = ( , , ).

n

n n

n

n n

y
H x B t H x t y B

t

y
H x B t H xt yt B

t





 
 
 

 
 
 

                       (4.3) 

 From (4.1) and (4.3), we can be expressed equivalently as  

 .),,()(
!

1
=);,(

1)
2

(

0

1 dtBytxHteA
n

ByxC n

I
n

A
tA

n







             (4.4) 

 Also, in view of the relation (4.3) the above equation can be expressed equivalently as  

 .),,()(
!

1
=);,(

0

1 dtBytxtHteA
n

ByxC n

IAtA

n






                (4.5) 

 Now, making use of equation (1.9), (4.2) and (4.5) we find that the Gegenbauer matrix 

polynomials of two variables are defined by the following series  

 .)2(
)!2(!

)(1)(
=);,( 2

]
2

1
[

0=

knkn

kk
n

k

A

n Bx
knk

Ay
ByxC 




                  (4.6) 

 We have the following main theorem.  

 

Theorem 4.1. 

Let B  be a matrix in 
NNC 

, where 0>)(Re  for all eigenvalues )(B , and let A  be a 

matrix in 
NNC 

 satisfying the condition )()
2

( A
z

  for all {0} Zz , BAAB =  and 

2

1
<B . Then the generating matrix function for Gegenbauer matrix polynomials of two matrices is  

 
AnA

n

n

IytBxtItByxC 


 )2(=);,( 2

0=

                  (4.7) 
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 where 1<2 2 IytBxt  .  

Proof. From (1.12) and (4.6), we have  

 

.
)!(!

)2()()(
=

)!2(!

)()2(1)(
=);,(

0=0=

2
]

2

1
[

0=0=0=

kn

knk

n
n

kn

nkn

knkk
n

kn

nA

n

n

t
knk

BxyA

t
knk

ABxy
tByxC




















 

 Using (1.2) and (1.3), one get  

 
)!(!

)2()(
=)2(

0= knk

Bxyt
ytIBx

knkn

k

n








  

 we can write  

 
2

=0 =0

( ) ( 2 )
( , ; ) ( 2 )

!

n n
A n An
n

n n

A x B ytI t
C x y B t I xt B yt I

n

 


      

 This completes the proof.  

Secondly, we can introduce generalized Gegenbauer matrix polynomials, the new 

Gegenbauer-type matrix polynomials of three matrices defined by using the integral 

representation in the following relations:  

 .),,()(
!

1
=),;,(

1)
2

(

0

1 dtBytxHteA
n

PByxC n

I
n

A
PtA

n







         (4.8) 

 Also, in view of the relation (4.8) the above equation can be expressed equivalently as  

 
1 ( 1)

0

1
( , ; , ) = ( ) , ,

!

A Pt A n I

n n

y
C x y B P A e t H x B dt

n t


     

  
 

            (4.9) 

 and  

 .),,()(
!

1
=),;,(

0

1 dtBytxtHteA
n

PByxC n

IAPtA

n






                (4.10) 

 By using Hermite matrix polynomials of two variables and (4.10), we obtain the Gegenbauer 

matrix polynomials of two variables ),;,( PByxC A

n  

 .)2(
)!2(!

)(1)(
=),;,( 2

)(
]

2

1
[

0=

knkkn

AInkk
n

k

A

n Bxy
knk

AP
PByxC 






           (4.11) 
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Theorem 4.2.  

Let B  and P  be positive stable matrices in 
NNC 

 satisfying the conditions 0>)(Re  for all 

eigenvalues )(B , 0>)(Re  for all eigenvalues )(P  , and let A  be a matrix in 
NNC 

 

satisfying the condition )()
2

( A
z

  for all {0} Zz , such that A , B  and P are commuting 

matrices and 
2

1
<B . Then the Gegenbauer matrix polynomials of two variables have the generating 

matrix function:  

AnA

n

n

IytBxtPtPByxC 


 )2(=),;,( 2

0=

                  (4.12) 

 where PIytBxt <2 2 .  

Proof. This can be proved by using equations (1.3), (1.4), (1.12) and (4.10).  

Similarly, thirdly, we introduce the extension Gegenbauer matrix polynomials of two 

variables using the Hermite matrix polynomials to get further extensions in the following form  

1 ( 1)

, , 10

1
( , ; , ) = ( ) , , ,

!

A Pu A n I

n m n m m

y
C x y B P A e u H x B du

n u


   



 
  

 
    (4.13) 

 we can immediately derive that  

.),,()(
!

1
=),;,( ,

0

1

, duByuxuHueA
n

PByxC mn

IAPuA

mn






          (4.14) 

 where 2-index Hermite matrix polynomials of two variables ),,(, ByxH mn  are specified by the 

series definition [36]. 

.)(
)!(!

1)(
!=),,(

]
1

[

0=

,

mkn
kk

n
m

k

mn mBx
mknk

y
nByxH 




                (4.15) 

 By using (4.14) and (4.15), we obtain the series definition for the generalized Gegenbauer 

matrix polynomials of two variables as  

.)(
)!(!

)(1)(
=),;,(

1)(

1)(]
1

[

0=

,

mknkmn

AnIkImkkn
m

k

A

mn mBx
mknk

APy
PByxC 






     (4.16) 

Theorem 4.3. 

Let B  and P  be positive stable matrices in 
NNC 

 satisfying the conditions 0>)(Re  for all 

eigenvalues )(B , 0>)(Re  for all eigenvalues )(P  , and let A  be a matrix in 
NNC 

 

satisfying the condition )()
2

( A
z

  for all {0} Zz , such that A , B  and P  are 
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commuting matrices and 
m

B
1

< . Then we have:  

 
AmnA

mn

n

IytmBxtPtPByxC 


 )(=),;,(,

0=

                (4.17) 

 where PIytmBxt m < .  

Proof. From (1.3), (1.4), (1.12) and (4.16), we get the proof of equation (4.17) similarly.  

In the following, we obtain some properties for the Gegenbauer matrix polynomials of two 

variables as follows.  

 

Theorem 4.4. 

The Gegenbauer matrix polynomials ),;,(, PByxC A

mn  of two variables satisfying the following 

relation  

0.=),;,()(1)(),;,( 1)(

1

, PByxC
y

mBPByxC
x

A

rmnr

r
rrA

mnr

r













  (4.18) 

Proof. Differentiating (4.17) with respect to x  and y , we get  

nA

mn

n

IAm tPByxC
x

IytmBxtPmBtA ),;,(=)( ,

0=

)(




 




      (4.19) 

 and  

.),;,(=)( ,

0=

)( nA

mn

n

IAmm tPByxC
y

IytmBxtPAt



 




        (4.20) 

 Iteration (4.19) and (4.20), for nr 0 , implies (4.18) and the proof is completed.  

 

Theorem-4.5. 

The Gegenbauer matrix polynomials ),;,(, PByxC A

mn  of two variables satisfying the following 

relations  

).,;,()(1)(=),;,(

),,;,()()(=),;,(

,,

,1)(,

PByxCAPByxC
y

PByxCAmBPByxC
x

rIA

mmrnr

rA

mnr

r

rIA

mrmnr

rA

mnr

r

















      (4.21) 

Proof. From (4.19) and (4.20), we can write  
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.),;,(=

),;,(=)(

,),;,(=

),;,(=)2(

,

0=

,

=

)(

1,

0=

1

,

1=

)(

nA

mmn

n

mnA

mn

mn

IAm

nA

mn

n

nA

mn

n

IAm

tPByxC
y

tPByxC
y

IytmBxtIA

tPByxC
x

tPByxC
x

IytmBxtPAmB













































    (4.22) 

By applying (4.17), it follows that  

.),;,(=)(

,),;,(=)(

,

0=

)(

,

0=

)(

nIA

mn

n

IAm

nIA

mn

n

IAm

tPByxCAIytmBxtPA

tPByxCmBAIytmBxtPmBA



















    (4.23) 

 Identification of the coefficients of 
nt  in (4.23) yields  

).,;,(=),;,(

),,;,(=),;,(

,,

,1,

PByxCAPByxC
y

PByxCmBAPByxC
x

IA

mn

A

mmn

IA

mn

A

mn

















 

 which gives  

).,;,(=),;,(

),,;,(=),;,(

,,

1,,

PByxCAPByxC
y

PByxCmBAPByxC
x

IA

mmn

A

mn

IA

mn

A

mn

















            (4.24) 

 Iteration (4.24), for nr 0 , implies (4.21), we complete the proof.  

 

Remark-4.1. 

The generating matrix function for the Hermite matrix polynomials is  

).,,(
!

=][exp=)(lim ,

0=

ByxH
n

t
IytmBxtI

r

yt

r

mBxt
I mn

n

n

mr
m

r







  

As a result we obtain the following finite summation formula:  

 

Theorem-4.6. 

Gegenbauer and Hermite matrix polynomials satisfy  
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).,,()2(2

))1)((;;
1

)1)(1)((

,...,
1

)1)((
,(

)!(!

)(1)(
=),;,(

,

11

0

1)(

]
1

[

0=

,

ByxHyA

Pm
m

IImkmnA

m

IkmnA
kIF

mknk

A
PByxC

mmkn

knn

m

m

kmn

kn
m

k

A

mn
























(4.25) 

Proof. In Metwally, et al. [36], the expansion of Ixn
 in a series of Hermite matrix polynomials 

has been given in the form  

).,,(
)!(!

!
=)(

]
1

[

0=

ByxH
mrnr

n
mBx mrn

n
m

r

n




                      (4.26) 

By using (1.12), (4.16) and (4.26), it can be proved.  

On the other hand, differentiating (4.16) with respect to x , the ),;,(, PByxC A

mn  satisfy 

differential recurrence relation  

).,;,(=),;,( 1,, PByxCmBAPByxC
x

IA

mn

A

mn







                 (4.27) 

 The relation is of special interest, we can write  

).,;,()(=),;,( ,1, PByxCmBIAPByxC
x

A

mn

IA

mn 


 

               (4.28) 

 Compare (4.19) with (4.18), we obtain  

).,;,())((=),;,( 1,

2

1,2

2

PByxCmBIAAPByxC
x

IA

mn

IA

mn







 



         (4.29) 

 In (4.20), it is easy to see  

).,;,())((1)()(=),;,( ,

1

, PByxCAInAImBPByxC
x

nIA

mk

nA

mknn

n


 



     (4.30) 

 On the other hand, differentiating (4.17) partially with respect to x  and then with respect to 

t , we get the following differential recurrence relations  

),;,(=),;,()( 1,, PByxC
x

yPByxCn
x

x A

mmn

A

mn 








(4.31) 

 and  
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).,;,(=),;,(]1)[( 1,, PByxC
x

PPByxCmAnII
x

xm A

mn

A

mn 








       (4.32) 

 Now iteratively applying the linear differential operator in (4.32) 1m  times on (4.31) and 

using at each step the simple relation  

).(=)( nab
x

ax
xx

b
x

ax

nn


















                   (4.33) 

 From (4.33), we get the matrix differential equation of order m  in the following form  

,

1

,

[(( 1) ( 2) )(( 1) ( 3) )

...(( 1) )( )] ( , ; , )

= ( ) ( , ; , )

A

n m

m
m m m A

n mm

m x I nI mA m m I m x I nI mA m m I
x x

m x I nI mA x n C x y B P
x x

ym mB P C x y B P
x

 

 
         

 

 
   

 





(4.34) 

 These results are summarized below.  

 

Theorem-4.7. 

Let A , B , and P  be commuting matrices in 
NNC 

. Then the ),;,(, PByxC A

mn  is a solution of 

the matrix differential equation of order m .  

Now, by making use of the differential operator 
x

x



=  which possesses the interesting 

property that 
nn nxx = , we have  
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 and also  
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 On the other hand, for ),;,(, PByxC A

mn , we derive the following relations:  
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where, by virtue of the formula 
k

n

n
nk

n x
x

xx



 )(=)(  . 

Thus, the following result has been established:  

 

Theorem 4.8. 

The ),;,(, PByxC A

mn  satisfies the matrix differential equation  
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Finally, it is now interesting to extend the above results to new generalized forms of 

Gegenbauer-type matrix polynomials of two variables.  
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 where ),,(,, ByxH mn   generalized Hermite matrix polynomials is defined by Upadhyaya and 

Shehata [37] 
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 and the generating matrix function  
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 In fact, by noting that  
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 From (4.39) and (4.42), one gets equivalently as  
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 Now, making use of equation (1.9) and the formula (4.43), we find that the Gegenbauer 

matrix polynomials of three matrices are defined by the following series  
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Theorem 4.9. 

Let B  and P  be positive stable matrices in 
NNC 

 satisfying the conditions 0>)(Re  for all 

eigenvalues )(B , 0>)(Re  for all eigenvalues )(P  , and let A  be a matrix in 
NNC 

 

satisfying the condition )()
2

( A
z

  for all {0} Zz , such that A , B  and P  are 

commuting matrices and 
m

B
1

< . Then the Gegenbauer-type matrix polynomials of two variables has 

the following generating matrix function:  

AmnA

mn

n

IytmBxtPtPByxC 

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
              (4.45) 

 where PIytmBxt m <
.  

Proof. Multiplying both sides of (4.43) by 
nt , summing up over n , using (4.41) and them 

integrating over u , we have (4.45). This completes the proof.  

 In this paper, several new families of special matrix polynomials are introduced using 

integral transform method and allow the derivation of a wealth of relations involving these 

matrix polynomials. These results allow us to note that the use of the method of the integral 

representation is a fairly important tool of analysis and can be usefully extended to other families 

of Gegenbauer matrix polynomials which is a problem for further work.  
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