

22

† Corresponding author
© 2015 Conscientia Beam. All Rights Reserved.

CLASSIFICATION AND IDENTIFICATION OF RISK MANAGEMENT

TECHNIQUES FOR MITIGATING RISKS WITH FACTOR ANALYSIS

TECHNIQUE IN SOFTWARE RISK MANAGEMENT

Abdelrafe Elzamly1† --- Burairah Hussin2
1Information and Communication Technology, University Technical Malaysia Malaka (UTeM); Department of Computer Science,

Faculty of Applied Sciences, Al-Aqsa University, Gaza, Palestine

2Information and Communication Technology, University Technical Malaysia Malaka (UTeM), Malaysia

ABSTRACT

Regardless how much effort we put for the success of software projects, many software projects have a very

high failure risk rate. The failure risk is not always avoidable, but it could be controllable by using risk

management technique through the software development Lifecycle. The aim of this study is to present the

factor analysis techniques to classify and identify the risk management techniques in the software

development project. The best thirty risk management techniques were presented to respondents and all risk

management techniques are used most of the time, and often. We have chosen three components: Planning

and requirement techniques, communication techniques, models and tools for thirty risk management

techniques. The study has been conducted on a group of software project managers in software development

companies. We will intend to apply these study results on a real-world software project to verify the

effectiveness of the risk management techniques on a software project for mitigating risks. Successful

identifying of risk management techniques will greatly improve the probability of mitigating software risk.

Keywords: Software risk management, Software development project, Risk management techniques, Factor analysis

technique.

Received: 16 August 2015/ Revised: 5 January 2015/ Accepted: 8 January 2015/ Published: 12 January 2015

Contribution/ Originality

This study is to present the factor analysis technique to classify and identify the risk

management techniques (controls) in the software development project for mitigating risks.

Review of Computer Engineering Research
2015 Vol.2, No.1, pp.22-38
ISSN(e): 2410-9142
ISSN(p): 2412-4281
DOI: 10.18488/journal.76/2015.2.1/76.1.22.38
© 2015 Conscientia Beam. All Rights Reserved.

http://crossmark.crossref.org/dialog/?doi=10.18488/journal.76/2015.2.1/76.1.22.38

Review of Computer Engineering Research, 2015, 2(1): 22-38

23

© 2015 Conscientia Beam. All Rights Reserved.

1. INTRODUCTION

Despite much research and progress in the area of software project management, it still fails

to deliver acceptable systems on time and within budget. Much of these failures could be avoided

by managers pro-actively planning and dealing with risk management techniques rather than

waiting for problems to occur. Due to the involvement of risk management in monitoring the

success of a software project, analysing potential risks, and making decisions about what to do

with potential risks, the risk management is considered the planned control of risk. The goal of

risk management is identification and recognition of risks and risk management techniques at

early stage and then actively changes the course of actions to mitigate and reduce the risk [1]. In

the process of understanding the risk factors and risk management techniques that contribute to

software project success, software risk management is becoming increasingly important. In this

paper, we identify and classify risk management techniques that are guide software project

managers to mitigate risks in software development projects. Risk management is a practice of

controlling risk and practice consists of processes, methods, and tools, techniques for mitigating

risks in a software project before they become problems [2]. Furthermore, successful software

project risk management will greatly improve the probability of project success [3].

The objective of this study is: To identify risk management techniques of software projects

in the software development organizations for mitigating software risk based on the literature

review, to classify the risk management techniques for mitigating software risk in the software

development organizations.

2. LITERATURE REVIEW

The new technique used the chi-square (χ2) test to control the risks in a software project [4].

However, we also used new techniques which are the regression test and effect size test proposed

to manage the risks in a software project and reducing risk with software process improvement

[5]. Also we improved quality of software projects of the participating companies while

estimating the quality–affecting risks in IT software projects. The results show that there were

40 common risks in software projects of IT companies in Palestine. The amount of technical and

non-technical difficulties was very large [6]. Furthermore, we used the new stepwise regression

technique to manage the risks in a software project. These tests were performed using regression

analysis to compare the controls to each of the risk factors to determine if they are effective in

mitigating the occurrence of each risk factor implementation phase [7]. In addition, we proposed

the new mining technique that uses the fuzzy multiple regression analysis techniques to manage

the risks in a software project. However, these mining tests were performed using fuzzy multiple

regression analysis techniques to compare the risk management techniques to each of the

software risk factors to determine if they are effective in mitigating the occurrence of each

software risk factor [8]. Further, the fuzzy regression analysis modelling techniques are used to

manage the risks in a planning software development project. Top ten software risk factors in

Review of Computer Engineering Research, 2015, 2(1): 22-38

24

© 2015 Conscientia Beam. All Rights Reserved.

planning phase and thirty risk management techniques were presented to respondents [9]. In

addition, we identified and managed the maintenance risks in a software development project by

using fuzzy multiple regression analysis [10]. Also, we proposed new mining techniques that

uses the fuzzy multiple regression analysis techniques with fuzzy concepts to manage the

software risks in a software project. Top ten software risk factors in analysis phase and thirty risk

management techniques were presented to respondents. However, these mining tests were

performed using fuzzy multiple regression analysis techniques to compare the risk management

techniques with each of the software risk factors to determine if they are effective in reducing the

occurrence of each software risk factor [11]. Also, the paper aimed to present new mining

technique to identify the risk management techniques that are effective in reducing the occurrence

of each software implementation risks [12]. Furthermore, we presented the new statistical

techniques–namely, the stepwise multiple regression analysis techniques and Durbin Watson

techniques to reduce software maintenance risks in a software projects [13]. The authors

continue the effort to enrich the managing software project risks with consider mining and

quantitative approach with large data set. The two new techniques are introduced namely

stepwise multiple regression analysis and fuzzy multiple regression to manage the software risks

[14]. This paper aimed to present new techniques to determine if fuzzy and stepwise regression

are effective in mitigating the occurrence software risk factor in the implementation phase [15].

According to Dash and Dash [16] risk management consists of the processes, methodologies and

tools that are used to deal with risk factors in the SDLC process of Software Project. In addition,

the optimization method was tested with various software project risk prediction models that

have been developed [17]. Finally, risk management methodology that has five phases: Risk

identification (planning, identification, prioritization), risk analysis and evaluation (risk analysis,

risk evaluation), risk treatment, risk controlling, risk communication and documentation these

relied on three categories techniques as risk qualitative analysis, risk quantitative analysis and

risk mining analysis throughout the life of a software project to meet the goals [18].

3. RISK MANAGEMENT TECHNIQUES

Through reading the existing literature on software risk management, we listed thirty risk

management techniques that are considered important in mitigating the software risk factors

identified. In the study, we summarize the best 30 risk management techniques in mitigating risk

as follows:

C1: Using of Requirements Scrubbing

It is a best practice for software projects in which a product specification is carefully tested

for unimportant or overly complex requirements, which are then deleted [19]. This is believed

the reasons as the process of reviewing each requirement in detailed absolutely necessary for the

Review of Computer Engineering Research, 2015, 2(1): 22-38

25

© 2015 Conscientia Beam. All Rights Reserved.

upcoming release and it can increase dramatically the chances of delivering software project on-

time and within budgets [20].

C2: Stabilizing Requirements and Specifications as Early as Possible

The key to stabilizing requirements is through a partnership developed in software projects.

Therefore, the functional manager plays vital role in transferring business knowledge to the

software project team and participating in the process design and the requirements that support

the process design [21]. Many software projects are faced with uncertainty when software

requirements are first stated [22]. However, they referred to stabilize requirements and

specifications as early as possible as a risk management techniques [4].

C3: Assessing Cost and Scheduling the Impact of Each Change to Requirements and

Specifications

Indeed, they found that software failure risks are dramatically positive related with both

overruns budgets and schedule [23], [24]. Hence, estimating cost and software project schedule

impact is important to mitigate risk requirements and specifications and the successful software

development [25].

C4: Develop Prototyping and have the Requirements Reviewed by the Client

Software prototype is a rapid software development for validating the requirements and help

software team to understand the software [26]. In addition, it is clear that building early

prototypes can help coin out some changes software development lifecycle. This is reported by

Savolainen, et al. [27], as prototyping can reduce requirements creep and can be combined with

other approaches. Furthermore, prototyping approach can used to mitigate risk issues as user

interfaces, software/system interaction, or software performance [28], [29].

C5: Developing and Adhering a Software Project Plan

Some authors reported that developing and adhering a software project plan to deliver

software project within the budget and on the schedule [22], [30]. In addition, he proposed

application of software planning techniques to manage the multiple problems and the complexity

associated with software planning [31].

C6: Implementing and Following a Communication Plan

Communication plan is crucial for monitoring progress [32] as each individual should feel

suitable to provide inputs on raised problems. Progress knowledge should be shared with all

concerned during or at the completion of each task before moving forward to the next.

Review of Computer Engineering Research, 2015, 2(1): 22-38

26

© 2015 Conscientia Beam. All Rights Reserved.

C7: Developing Contingency Plans to Cope with Staffing Problems

Developing contingency actions that able to be taken if the software project turns into a risk

failure [22]. Furthermore, creating risk contingency plans is risk mitigation for the group of

facilities to be reduced risks.

C8: Assigning Responsibilities to Team Members and Rotate Jobs

Assigning clear responsibilities and roles for the members of the risk response team that

contribute developing software project in software development lifecycle and to meet immediately

with various aspects of disaster response, assessment, and recovery [22], [33]. It is important

to assign the responsibilities clearly for the appropriate performing organizations in the early

stage with lead [34]. It is also sometimes better to rotate developers and leaders the sections of

the software project development to gain a variety of experiences [2].

C9: Have Team-Building Sessions

Clearly, when team building sessions were conducted by the software project manager

throughout the entire software project lifecycle it contribute to software project success [35].

C10: Reviewing and Communicating Progress to Date and Setting Objectives for the Next

Phase

The team manager need to review the progress in all phases such as number of units

designed, reused, tested, and integrated module [2], [32].

C11: Dividing the Software Project into Controllable Portions

A software project manager need to break large software project into incremental small work

elements to mitigate software project risks [22]. Furthermore, the methodology describes how a

software project is divided into manageable stages enabling efficient control of resources and

regular progress monitoring throughout the software development lifecycle.

C12: Reusable Source Code and Interface Methods

According to Jones and Sodhi and Sodhi [2], Jones [36], reusable source code and interface

methods will impacted many new tools and programming languages such as Java, and object-

oriented (OO) languages. Thus, reusable source code and interface method is useful to mitigate

risk.

C13: Reusable Test Plans and Test Cases

A pre-release defect can be found in any of the software project [36]. Hence, reusable test

plans and cases would speed up the process of creating testability of test plans and allow an easier

test case generation [37].

Review of Computer Engineering Research, 2015, 2(1): 22-38

27

© 2015 Conscientia Beam. All Rights Reserved.

C14: Reusable Database and Data Mining Structures

According to Jones [36], reusable database structures and data mining tools greatly improve

the ability of the analyst to make data-driven discoveries, where most of the time spent in

performing an analysis spent in data identification, gathering, cleaning and processing the data.

This is similar to which proposed a method for generic and reusable text mining techniques in

support of biological database [38].

C15: Reusable User Documents Early

 According to Jones [36], referred to reusable user documents. In addition [39], proposed

that explicit part of knowledge could be captured in several forms such as user manual, training

documents, process design documents, and others. This will help software developers and used

bind into standard communication approach [40].

C16: Implementing/Utilizing Automated Version Control Tools

According to Green [41], software developers need to have a version control systems for

manage source code changes [41]. The version control tools are able to track evolving versions

of a project’s work products, and testing tools to aid in verifying the software. Fairley also

commented that automated version control is essential for establishing and maintaining the

baselines of various work products in various stages of development [41].

C17: Implement/Utilize Benchmarking and Tools of Technical Analysis

According to Jones [36], explained benchmarking, or comparing software productivity,

quality, schedules, salaries, and methodologies, between companies was rare when the data for the

first edition was assembled. Therefore, software benchmarking is continuing to expand in terms

of the kinds of information collected and the number of companies that participate. Based on the

ever-growing amount of solid data, the benchmarking is now a mainstream activity within the

software world.

C18: Creating and Analyzing Process by Simulation and Modeling

Modelling and simulation of software development processes is gaining an increasing

demand to reduce risks that focuses on a specific software development/maintenance/evolution

process [29], [42]. In addition [43], described the process model simulation on risk occurrence

probability do have an impact in software project. Furthermore, software processing simulation

modelling (SPSM) has been emerging as a promising approach to address a variety of issues in

software engineering area, including risk management [44].

C19: Provide Scenarios Methods and Using of the Reference Checking

According to Alhawari, et al. [45], described risk analysis phase by conducting scenarios for

Review of Computer Engineering Research, 2015, 2(1): 22-38

28

© 2015 Conscientia Beam. All Rights Reserved.

major risks, and events to establish a probability of losses for every risk scenario. However

Schmidt, et al. [46], suggested various methods for identifying software risk factors including

scenarios. This will lead to allow more realistic plans and estimates to be prepared and identified

risk [47].

C20: Involving Management during the Entire Software Project Lifecycle

The involvement of all members in software development team will reduce risk. This is

because the nature of the work process and relations required more management involvement

[48].

C21: Including Formal and Periodic Risk Assessment

According to Webern, et al. [49], risk analysis is a models for quantifying and evaluating a

critical event occurrence. This is include a process of identifying relevant information of

resources (software risk factors), discovering their relationships, and integrating them to form a

risk assessment argument [50]. Hence, a model-based assessment that covers the formal and

periodic risk should facilitate communication between internal and external factors in software

project [51].

C22: Utilizing Change Control Board and Exercise Quality Change Control Practices

Contingency funds were managed centrally by the project through change control board

procedures [52]. Really Fairley [20], can be defined Change Control Board as the minimum set

of project stakeholders who need to review and approve any change request impacting the

software project’s critical success factors.

C23: Educating Users on the Impact of Changes during the Software Project

They integrated hardware/software approach is useful for educating users about software

technology in software project is important to reduce risks [53].

C24: Ensuring that Quality-Factor Deliverables and Task Analysis

According to Bavani [54], ensuring high quality deliverables on schedule is important to

mitigate risks in software project. Furthermore Keil, et al. [55], provided guidance on how to

select members of review teams that help assure the quality of software project deliverables.

C25: Avoiding having too Many New Functions on Software Projects

Modern technical systems typically consist of multiple components and must provide many

functions that are realized as a complex interaction of these components [56]. It is said that too

many functions has difficult human interfaces for beginners, thus needs to implement new

functionality on an incremental rather than too many new function [57].

Review of Computer Engineering Research, 2015, 2(1): 22-38

29

© 2015 Conscientia Beam. All Rights Reserved.

C26: Incremental Development (Deferring Changes to Later Increments)

Increment development is not based on a certain scope (requirement subset) but is instead

based on a measure of effort for improvement [58].

C27: Combining Internal Evaluations by External Reviews

Generally, the product will had internal evaluations by software project teams before

delivering it to customers [54]. Moreover, reviewing, and evaluating strengths and weaknesses

from a reviewer is one of the external factors to mitigate risk. The objective of internal and

external is In addition, the objectives of external and internal is to have the consistency of all

elements in software [59].

C28: Maintain Proper Documentation of Each Individual's Work

In the software industry, documented bi-directional traceability is needed needs to be

maintained over the entire life cycle of the software project [60]. In addition, it is reported that

substantial percentage amount of software firm do not maintain documented procedure for after

sales service [61]. Overcome this issue can be treated with a control of the management process.

C29: Provide Training in the new Technology and Organize Domain Knowledge Training

According to Fairley [20], organizational training: To develop skills and knowledge among

workers can perform their jobs efficiently and effectively.

C30: Participating Users during the Entire Software Project Lifecycle

Clearly, initiating user can be found from a group of users the one whose profile best

matches to limit the risk [62]. This is because the set of participating users, hardware, and

software in ubiquitous computing environments is highly dynamic and unpredictable [63]. The

authors like [64] referred to participating users in the software development will enable more

advantage during their communication with other user to specify the requirement.

4. EMPIRICAL STRATEGY

Data collection was achieved through the use of a structured questionnaire and historical

data. Thirty risk management techniques were presented to respondents. The method of sample

selection referred to as ‘snowball’ and distribution personal regular sampling was used. This

procedure is appropriate when members of homogeneous groups (such as software project

managers, IT managers) are difficult to locate. The software project managers that participated in

this survey are coming from specific mainly software project manager in software development

organizations. The factor analysis techniques used to classify the risk management techniques by

the collected data. Respondents were presented with various questions, which used scale 1-7. For

presentation purposes in this study and for effectiveness, the point scale as the following: Seven

frequency categories were scaled into ‘never’ equal one and ‘always’ equal seven. Factor analysis

Review of Computer Engineering Research, 2015, 2(1): 22-38

30

© 2015 Conscientia Beam. All Rights Reserved.

attempts to identify underlying variables, or factors, that explain the pattern of correlations

within a set of observed variables. Also Factor analysis is often used in data reduction to identify a

small number of factors that explain most of the variance observed in a much larger number of

manifest variables (www.spss.com, 18/2/2013). We used the principal components method of

extraction begins by finding a linear combination of variables (a component) that accounts for as

much variation in the original variables as possible. Furthermore, to analyse the questionnaire

inputs shown in below, we used the factor analysis approach, which is provided by SPSS

statistical software.

4.1. Descriptive Statistics

Typically, the mean, standard deviation in the survey questionnaire are given. Looking at the

mean, one can conclude that” reusable database and data mining structures” is the most important

variable because it has the highest mean of 6.8.

Table-1. Descriptive Statistics

Variable Mean Std. Deviation

C1 5.50 1.504
C2 5.50 1.051

C3 5.60 1.188

C4 5.80 .768
C5 5.45 1.356

C6 5.50 1.539
C7 5.75 .639

C8 4.80 1.152
C9 4.40 1.353
C10 4.75 1.446
C11 4.75 1.372
C12 6.25 1.803
C13 6.20 1.704
C14 6.80 1.508
C15 6.15 1.954
C16 6.40 1.930
C17 6.35 1.899
C18 6.40 1.635

C19 6.40 2.113
C20 6.35 1.843
C21 6.20 1.908
C22 6.45 1.605
C23 6.25 1.293
C24 6.55 1.761
C25 6.45 1.468
C26 6.45 1.761
C27 6.40 1.698
C28 6.00 1.717
C29 6.05 1.731

C30 4.80 1.361

http://www.spss.com/

Review of Computer Engineering Research, 2015, 2(1): 22-38

31

© 2015 Conscientia Beam. All Rights Reserved.

4.2. The Correlation Matrix

The next output from the factor analysis is the correlation coefficient. The correlation

coefficient between a variable and itself is always one; hence, the principal diagonal of the

correlation matrix contains 1s.

4.3. Communalities

However, communalities indicate the amount of variance in each variable that is accounted

for Initial communalities are estimates of the variance in each variable accounted for by all

components or factors. For principal components extraction, this is always equal to 1.0 for

correlation analyses. The communalities in this Table 2 are all high, which indicates that the

extracted components represent the variables well. Therefore, the next item from the output is a

table of communalities, which shows how much of the variance in the variables has been

accounted for by the extracted factors. For instance, over 92.8% of the variance in C5 is accounted

for while 66.9% of the variance in C8 is accounted.

Table-2. Communalities

Variable Initial Extraction

C1 1.000 .906

C2 1.000 .802

C3 1.000 .761
C4 1.000 .884

C5 1.000 .928
C6 1.000 .772

C7 1.000 .862
C8 1.000 .669

C9 1.000 .790
C10 1.000 .885

C11 1.000 .788
C12 1.000 .868

C13 1.000 .706
C14 1.000 .729

C15 1.000 .855
C16 1.000 .891

C17 1.000 .858
C18 1.000 .790

C19 1.000 .911
C20 1.000 .888

C21 1.000 .870

C22 1.000 .802
C23 1.000 .736

C24 1.000 .829
C25 1.000 .757

C26 1.000 .844
C27 1.000 .897

C28 1.000 .755
C29 1.000 .854

C30 1.000 .782

 Extraction Method: Principal Component Analysis.

Review of Computer Engineering Research, 2015, 2(1): 22-38

32

© 2015 Conscientia Beam. All Rights Reserved.

4.4. Total Variance Explained

The next item shows all the factors extractable from the analysis along with their Eigen

values, the percent of variance attributable to each factor, and the cumulative variance of the

factor and the previous factors. Notice that the first factor accounts for 57.45% of the variance, the

second factor 15.995% and the third factor8.789%. All the remaining factors are not significant.

For the initial solution, there are as many components as variables, and in a correlations analysis,

the sum of the eigenvalues equals the number of components. We have requested that eigenvalues

greater than 1 be extracted, so the first three principal components of the extracted solution.

Table-3. Total Variance Explained

 Extraction Method: Principal Component Analysis

4.5. Scree Plot

The eigenvalue of each component of the initial solution is plotted. The scree plot is a graph

of the Eigenvalues against all the factors. It can be seen that the curve begins to flatten between

components 3 and 4. Note also that factor 4 has an Eigen value of less than 1, the drop occurs

between third and fourth components, so only the first three factors have been retained as

Planning and requirement techniques, communication techniques, and models & tools.

Figure-1. Scree Plot

4.6. Component (Factor) Matrix

Table 4 shows the loadings of the thirty variables on the three factors extracted. The higher

the absolute value of the loading, the more the factor contributes to the variable. The gap on the

Review of Computer Engineering Research, 2015, 2(1): 22-38

33

© 2015 Conscientia Beam. All Rights Reserved.

table represent loadings that are less than 0.5, this makes reading the table easier. We suppressed

all loadings less than 0.5.

Table-4. Component Matrix

Variable

Component

1 2 3

C1 .756 .575
C2 .815

C3 .715
C4 .508 .642

C5 .829
C6 .748

C7 -.728

C8 .694
C9 .584 .584

C10 .597 .627
C11 .577 .647

C12 .922
C13 .816

C14 .552 .534
C15 .892

C16 .938
C17 .873

C18 .867
C19 .925

C20 .919
C21 .891

C22 .823
C23 .690 .509

C24 .806

C25 .736

C26 .774
C27 .894

C28 .767
C29 .907

C30 .632
 Extraction Method: Principal Component Analysis.
 a 3 components extracted.

4.7. Rotated Component (Factor) Matrix

The idea of rotation is to reduce the number factors on which the variables under

investigation have high loadings. Also the rotated component matrix helps you to determine what

the components Rotation does not actually change anything but makes the interpretation of the

analysis easier. Looking at the Table 5, we can see that C1, C2, C3, C4, C5, C6 and are

substantially loaded on Factor (Component) 1 while C8, C9, C10, C11 and C30 are substantially

loaded on Factor (Component) 2. All remaining variables are substantially loaded on Factor

(Component) 3. These factors can be used as variables for further analysis.

Review of Computer Engineering Research, 2015, 2(1): 22-38

34

© 2015 Conscientia Beam. All Rights Reserved.

Table-5. Rotated Component Matrix

Variable

Component

1 2 3

C1 .507

C2 .585

C3 .585

C4 .841

C5 .800

C6 .740

C7 .927

C8 .803

C9 .835

C10 .927

C11 .805

C12 .794

C13 .772

C14 .812

C15 .870

C16 .827

C17 .810

C18 .767

C19 .800

C20 .785

C21 .821

C22 .805

C23 .843

C24 .862

C25 .846

C26 .918

C27 .892

C28 .789

C29 .767

C30 .864

 Extraction Method: Principal Component Analysis.
 Rotation Method: Varimax with Kaiser Normalization.
 a. Rotation converged in 6 iterations.

4.8. Comment

According to the factor analysis, there are three significant risk management techniques for

mitigating risk factors, which are planning and requirement techniques (c1, c2, c3, c4, c5, c6, c7),

communication techniques (c8, c9, c10, c11, c30), models and tools (c12, c13, c14, c15, c16, c17,

c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29).

5. CONCLUSIONS

We presented an approach’s factor analysis for classifying risk management techniques; we have chosen

three components as planning and requirement techniques, communication techniques, and models and tools

for thirty risk management techniques. The results also show that all risk management techniques are used

most of the time, and often to mitigate risks. These tests were performed using factor analysis techniques, to

classify the risk management techniques in a software project. As future work, we will intend to apply these

study results on a real-world software project to verify the effectiveness of the risk management techniques

on a software project for mitigating risks.

Funding: This work is supported by Faculty of Information and Communication Technology, Universiti
Teknikal Malaysia Melaka (UTeM), Malaysia and Al-Aqsa University-Palestine

Competing Interests: The authors declare that they have no competing interests.

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

Review of Computer Engineering Research, 2015, 2(1): 22-38

35

© 2015 Conscientia Beam. All Rights Reserved.

REFERENCES

[1] J. Miler and J. Górski, "Supporting team risk management in software procurement and development projects,"

presented at the 4th National Conference on Software Engineering, 2002.

[2] J. Sodhi and P. Sodhi, "It project management handbook: Management concepts (USA), ISBN:1-56726-098," p.

264, 2001.

[3] A. Elzamly, "Evaluation of quantitative and mining techniques for reducing software maintenance risks," Appl.

Math. Sci., vol. 8, pp. 5533–5542, 2014.

[4] K. Khanfar, A. Elzamly, W. Al-Ahmad, E. El-Qawasmeh, K. Alsamara, and S. Abuleil, "Managing software

project risks with the chi-square technique," Int. Manag. Rev., vol. 4, pp. 18–29, 2008.

[5] A. Elzamly and B. Hussin, "Managing software project risks with proposed regression model techniques and

effect size technique," Int. Rev. Comput. Softw., vol. 6, pp. 250–263, 2011.

[6] A. Elzamly and B. Hussin, "Estimating quality-affecting risks in software projects," Int. Manag. Rev. Am. Sch.

Press, vol. 7, pp. 66–83, 2011.

[7] A. Elzamly and B. Hussin, "Managing software project risks (Implementation Phase) with proposed stepwise

regression analysis techniques," Int. J. Inf. Technol., vol. 1, pp. 300–312, 2013.

[8] A. Elzamly and B. Hussin, "Managing software project risks (Design Phase) with proposed fuzzy regression

analysis techniques with fuzzy concepts," Int. Rev. Comput. Softw., vol. 8, pp. 2601–2613, 2013.

[9] A. Elzamly and B. Hussin, "Managing software project risks (Planning Phase) with proposed fuzzy regression

analysis techniques with fuzzy concepts," Int. J. Inf. Comput. Sci., vol. 3, pp. 31–40, 2014.

[10] A. Elzamly and B. Hussin, "Identifying and managing software project risks with proposed fuzzy regression

analysis techniques: Maintenance phase," presented at the 2014 Conference on Management and Engineering

(CME2014), 2014.

[11] A. Elzamly and B. Hussin, "Managing software project risks (Analysis Phase) with proposed fuzzy regression

analysis modelling techniques with fuzzy concepts," J. Comput. Inf. Technol., vol. 22, pp. 131–144, 2014.

[12] A. Elzamly and B. Hussin, "Modelling and mitigating software implementation project risks with proposed

mining technique," Inf. Eng., vol. 3, pp. 39–48, 2014.

[13] A. Elzamly and B. Hussin, "Mitigating software maintenance project risks with stepwise regression analysis

techniques," J. Mod. Math. Front, vol. 3, pp. 34–44, 2014.

[14] A. Elzamly and B. Hussin, "A comparison of stepwise and fuzzy multiple regression analysis techniques for

managing software project risks : Analysis phase," J. Comput. Sci., vol. 10, pp. 1725–1742, 2014.

[15] A. Elzamly and B. Hussin, "Acomparison of fuzzy and stepwise multiple regression analysis techniques for

managing software project risks: Implementation phase," Int. Manag. Rev., vol. 10, pp. 43–54, 2014.

[16] R. Dash and R. Dash, "Risk assessment techniques for software development," Eur. J. Sci. Res., vol. 42, pp. 629–

636, 2010.

[17] F. Reyes, N. Cerpa, A. Candia, and M. Bardeen, "The optimization of success probability for software projects

using genetic algorithms," J. Syst. Softw., vol. 84, pp. 775–785, 2011.

[18] A. Elzamly and B. Hussin, "An enhancement of framework software risk management methodology for

successful software development," J. Theor. Appl. Inf. Technol., vol. 62, pp. 410–423, 2014.

Review of Computer Engineering Research, 2015, 2(1): 22-38

36

© 2015 Conscientia Beam. All Rights Reserved.

[19] S. McConnell, Rapid development: Taming wild software schedules: Microsoft Press, 1996.

[20] R. Fairley, Managing and leading software projects: Wiley-IEEE Computer Society Press, ISBN: 978-0-470-

29455-0, 2009.

[21] J. Ferraro, Project management techniques for non-project managers: AMACOM, ISBN: 0814417361, 2012.

[22] T. Addison and S. Vallabh, "Controlling software project risks – an empirical study of methods used by

experienced project managers," in Proceedings of SAICSIT, 2002, pp. 128 – 140.

[23] K. Na, J. Simpson, X. Li, T. Singh, and K. Kim, "Software development risk and project performance

measurement: Evidence in Korea," J. Syst. Softw., vol. 80, pp. 596–605, 2007.

[24] J. Ropponen and K. Lyytinen, "Components of software development risk: How to address them? A project

manager survey," IEEE Trans. Softw. Eng., vol. 26, pp. 98–112, 2000.

[25] K. R. Linberg, "Software developer perceptions about software project failure: A case study," J. Syst. Softw., vol.

49, pp. 177–192, 1999.

[26] A. Puntambekar, Software engineering: Technical Publications, ISBN: 8184316054, 2009.

[27] P. Savolainen, J. Ahonen, and I. Richardson, "Software development project success and failure from the

supplier’s perspective: A systematic literature review," Int. J. Proj. Manag., vol. 30, pp. 458–469, 2012.

[28] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby, "Cost models for future software life

cycle processes: COCOMO 2.0," Ann. Softw. Eng., vol. 1, pp. 57–94, 1995.

[29] D. Surie, "Evaluation and integration of risk management in CMMI and ISO / IEC 15504," presented at the

8th Student Conference in Computing Science, Umeå, Sweden, 2004.

[30] D. Dufner, O. Kwon, and A. Doty, "Improving software development project team performance: A web-based

expert support system for project control," in Proceedings of the 32nd Annual Hawaii International Conference on

Systems Sciences (HICSS-32), 1999, pp. 1-10.

[31] V. Anantatmula, "Project planning techniques for academic advising and learning," Int. J. Scholarsh. Teach.

Learn, vol. 6, pp. 1-19, 2010.

[32] F. Sarfraz, "Managing for a successful project closure," presented at the PICMET ’09 - 2009 Portland

International Conference on Management of Engineering & Technology, 2009.

[33] S. Grabski, S. Leech, and B. Lu, "Risks and controls in the implementation of ERP systems," Int. J. Digit.

Account. Res., vol. 1, pp. 47–68, 2001.

[34] G. Schulmeyer, "Handbook of software quality assurance," presented at the Fourth. ARTECH HOUSE, INC,

2008.

[35] J. Jianga, G. Kleinb, H. G. Chenc, and L. Lind, "Reducing user-related risks during and prior to system

development," Int. J. Proj. Manag., vol. 20, pp. 507–515, 2002.

[36] C. Jones, Applied software measurement global analysis of productivity and quality, 3rd ed.: McGraw-Hill Companies,

ISBN: 0071502440, 2008.

[37] J. Kasurinen, O. Taipale, and K. Smolander, "Test case selection and prioritization: Risk-based or," in

Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement

ESEM ’10, 2010, pp. 1–10.

Review of Computer Engineering Research, 2015, 2(1): 22-38

37

© 2015 Conscientia Beam. All Rights Reserved.

[38] O. Miotto, T. Tan, and V. Brusic, "Supporting the curation of biological databases with reusable text mining,"

Genome Informatics, vol. 16, pp. 32–44, 2005.

[39] P. Kanjanasanpetch and B. Lgel, "Managing knowledge in enterprise resource planning (ERP)

implementation," presented at the Managing Technologically Driven Organizations: The Human Side of

Innovation and Change, Engineering Management Conference, IEMC ’03, 2003.

[40] R. M. Shand, "User manuals as project management tools: Part II-aractical applications," IEEE Trans. Prof.

Commun., vol. 3, pp. 123–142, 1994.

[41] R. Green, "Documentation meets version control: An automated backup system for HTML-based help," in

Professional Communication Conference, Proceedings of 2000 Joint IEEE International and 18th Annual Conference on

Computer Documentation (IPCC/SIGDOC 2000), 2000, pp. 541–548.

[42] K. Kouskouras and A. Georgiou, "A discrete event simulation model in the case of managing a software

project," Eur. J. Oper. Res., vol. 181, pp. 374–389, 2007.

[43] G. Jiang and Y. Chen, "Coordinate metrics and process model to manage software project risk," presented at

the IEEE International Engineering Management Conference, 2004.

[44] D. Liu, Q. Wang, and J. Xiao, "The role of software process simulation modeling in software risk management:

A systematic review," presented at the Third International Symposium on Empirical Software Engineering and

Measurement, 2009.

[45] S. Alhawari, F. Thabtah, L. Karadsheh, and W. Hadi, "A risk management model for project execution,"

presented at the The 9th IIBIMA Conference on Information Management in Modern Organizations, 2008.

[46] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, "Identifying software project risks: An international delphi

study," J. Manag. Inf. Syst., vol. 17, pp. 5–36, 2001.

[47] A. Azari, N. Mousavi, and S. Mousavi, "Risk assessment model selection in construction industry," Expert Syst.

Appl., vol. 38, pp. 9105–9111, 2011.

[48] T. Dyba and T. Dingsoyr, "Empirical studies of agile software development: A systematic review," Inf. Softw.

Technol., vol. 50, pp. 833–859, 2008.

[49] P. Webern, G. Medina-Oliva, C. Simon, and B. Iung, "Overview on bayesian networks applications for

dependability, risk analysis and maintenance areas," Eng. Appl. Artif. Intell., vol. 42, pp. 115–125, 2010.

[50] S. Lee, "Probabilistic risk assessment for security requirements: A preliminary study," presented at the Fifth

International Conference on Secure Software Integration and Reliability Improvement, 2011.

[51] J. Aagedal, F. Braber, T. Dimitrakos, B. Gran, D. Raptis, and K. Stølen, "Model-based risk assessment to

improve enterprise security," in Proceedings of The Sixth International Enterprise Distributed Object Computing

Conference (EDOC’02), 2002, p. 12.

[52] C. Strawbridge, "Project management in large collaborations: SNS lessons learned for ITER," presented at the

Twenty-First IEEE/NPS Symposium on Fusion Engineering, 2005.

[53] K. Persohn and D. Brylow, "Interactive real-time embedded systems education infused with applied internet

telephony," presented at the 35th IEEE Annual Computer Software and Applications Conference, 2011.

[54] R. Bavani, "Global software engineering: Challenges in customer value creation," presented at the 2010

International Conference on Global Software Engineering, 2010.

Review of Computer Engineering Research, 2015, 2(1): 22-38

38

© 2015 Conscientia Beam. All Rights Reserved.

[55] M. Keil, L. Li, L. Mathiassen, and G. Zheng, "The influence of checklists and roles on software practitioner risk

perception and decision-making," J. Syst. Softw., vol. 81, pp. 908–919, 2008.

[56] J. Greenyer, A. Sharifloo, M. Cordy, and P. Heymans, "Efficient consistency checking of scenario-based

product-line specifications," presented at the 20th IEEE International Requirements Engineering Conference

(RE), 2012.

[57] M. Oda, "The characteristics of the use of twitter by beginners: Study of the applicability to the e-healthcare,"

presented at the International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2010.

[58] D. M. Brandon, Project management for modern information systems: IRM Press, Idea Group Inc., PSBN:1-59140-

693-5, 2006.

[59] A. Peppen and M. Ploeg, "Practicing what we teach: Quality management of systems-engineering education,"

IEEE Trans. Syst. Man, Cybern. C Appl. Rev., vol. 30, pp. 189–196, 2000.

[60] J. Chen and S. Huang, "An empirical analysis of the impact of software development problem factors on

software maintainability," J. Syst. Softw., vol. 82, pp. 981–992, 2009.

[61] Z. Begum, M. Khan, M. Hafiz, M. S. Islam, and M. Shoyaib, "Software development standard and software

engineering practice: A case study of Bangladesh," J. Bangladesh Acad. Sci., vol. 32, pp. 131–139, 2008.

[62] M. Li, S. Yu, N. Cao, and W. Lou, "Privacy-preserving distributed profile matching in proximity-based mobile

social networks," IEEE Trans. Wirel. Commun., vol. 12, pp. 2024– 2033, 2013.

[63] V. Cahill, A. Fox, T. Kindberg, and B. Noble, "Building and evaluating ubiquitous system software," Pervasive

Comput. IEEE CS IEEE Com Soc., vol. 3, pp. 20–21, 2004.

[64] J. Jin and B. Li, "Cooperative multicast scheduling with random network coding in WiMAX," presented at the

2009 17th International Workshop on Quality of Service, 2009.

Views and opinions expressed in this article are the views and opinions of the author(s), Review of Computer Engineering Research
shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

