
 

 

 
39 

† Corresponding author  
© 2015 Conscientia Beam. All Rights Reserved. 

 

A DETAILED ANALYSIS OF SOFTWARE COST ESTIMATION USING 
COSMIC-FFP 

 

Gaurav Kumar1† --- Pradeep Kumar Bhatia2 

1,2Department of Computer Science & Engineering, Guru Jambheshwar University of Science & Technology, 

Hisar, Haryana, India 

 

ABSTRACT 

Software cost estimation is one of the most challenging tasks in software engineering. For the estimation, 

Function points are useful in the business application software domain and problematic in the real-time 

software domain. Full Function Points (FFP) are useful for functionality-based estimation, specifically for 

real-time and embedded software. Functional size measurement method that has user view of functional 

requirements developed by Common Software Measurement International Consortium (COSMIC) called 

COSMIC-FFP. By using COSMIC-FFP model, an early prediction of the functional complexity of the 

software throughout the software development life cycle within given budget constraints, reliability can be 

done. In this paper, a detailed analysis with process flow of COSMIC-FFP model has been discussed. 

Keywords: COSMIC-common software measurement international consortium, CFSU-cosmic functional size unit, 

FUR-functional user requirement, FFP - full function points, IFPUG-international function point user group, FPA –

function point analysis, PL- project leader. 

 

Received: 14 January 2015/ Revised: 17 February 2015/ Accepted: 21 February 2015/ Published: 24 February 2015 

 

1. INTRODUCTION 

Accurate software estimation is an important requirement in today‟s highly competitive 

world. Estimation is used to calculate the size of the development work to be carried out. The 

purpose of FFP is to extend the IFPUG FPA accuracy of the real time systems estimation. The 

size estimation is done using Cosmic FFP 2.2. This Procedure is applicable to the Development 

Projects/Change Requests in existing projects/products. COSMIC-FFP focuses on the “user 

view” of functional requirements and is designed to measure the functional size of „data-rich‟ 

business/management information systems, „control-rich‟ real-time software, multi-layer systems 

and/or multi-tier architecture. It is not designed to measure the functionality of software which is 

„algorithm-rich‟, that is software with complex mathematics, games, streaming software i.e. audio, 

Review of Computer Engineering Research 
2015 Vol.2, No.2, pp.39-46 
ISSN(e): 2410-9142 
ISSN(p): 2412-4281 
DOI:  10.18488/journal.76/2015.2.2/76.2.39.46 
© 2015 Conscientia Beam. All Rights Reserved. 

 

http://crossmark.crossref.org/dialog/?doi=10.18488/journal.76/2015.2.2/76.2.39.46


Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
40 

© 2015 Conscientia Beam. All Rights Reserved. 

video. COSMIC-FFP version 2.0 uses a two-phase approach for functional size measurement 

(mapping and measurement), a simplified set of base functional components (BFC) and a scalable 

aggregation function [1]. It also measures software complexity which is related to the size of the 

software and unpredictability (uncertainty) of its behaviour. Functional Size is independent of 

software language and development methods and is defined as size of the software derived by 

quantifying the Functional User Requirements i.e. what the software is expected to do for its 

users.  The process of COSMIC-FFP Measurement consists of three main phases [2]: 

a) Setting the Measurement Strategy 

b) Mapping the „Functional User Requirements‟ (or „FUR‟) of the software to be measured to 

the COSMIC-FFP concepts 

c) Measuring the resulting COSMIC-FFP model of the FUR 

For effort estimation, main input can be considered as Functional size which is related to 

effort. Team size, development type, programming language type, organization type and 

application type are some of the other factors that have significant impact on this measurement. 

The paper is organized as follows. Section 2 shows work done in the field with the reference 

of literature review. Section 3 describes the procedure flow with the help of flow diagrams. 

Section 4 presents size estimation guidelines with the help of identification of different 

components. Section 5 represents Effort calculation. Section 6 concludes the paper with some 

discussion and future work. 

 

2. LITERATURE REVIEW 

Gaurav and Pradeep Kumar [3] proposed an automated cost estimation model using Neural 

Network with KLOC as input and uses COCOMO model parameters. It helps project manager to 

calculate software cost using fast and realistic estimate of the project effort and development time. 

Tharwon [4] gave a detail analysis for software sizing measurement and commented on the 

findings and future trends and challenges of the software size estimation models. Kenneth and 

Rogardt [5] made an effort to minimize manual effort for estimation of Code Size. They defined a 

UML model to capture all information and developed a tool for automated estimation of Code 

Size based on CFP.  

Cigdem [6] described a study on how to use COSMIC functional size as an input for effort 

estimation models. The study explores whether the productivity values for developing each 

functionality type deviates significantly from a total average productivity value computed from 

total functional size and effort figures.  

The results of multiple case study in which COSMIC method was used for size measurement 

is explained. Manar Abu [7] proposed a model to assess the quality using COSMIC-FFP and 

predicts the functional complexity of the behavior of software from the very initial requirements 

phase; with a mechanism for generating black-box test cases, test case prioritization and test set 



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
41 

© 2015 Conscientia Beam. All Rights Reserved. 

adequacy monitoring and optimization within given budget constraints, and an early prediction of 

reliability based on Markov chains is calculated. 

Çigdem, et al. [8] presented a case study on implementing COSMIC FFP and Use Case 

Points (UCP) methods to an industrial project. The estimated effort is compared with the actual 

development effort utilized for the system.Gennaro, et al. [9] addressed the problem of 

estimating effort in developing web applications. They used an adapted Cosmic FFP method on 

design documents to count data movements. They carried out an empirical analysis to verify the 

usefulness of method to predict effort for web application development. 

 

3. PROCEDURE FLOW 

The COSMIC-FFP measurement method breaks down the software architecture into software 

layers where each software layer can receive requests from the above layers and can request for 

services from the below layers. Measurement system includes various phases as explained under. 

 

A. Mapping Phase 

The mapping phase is based on information provided by the functional user requirements [10]. 

Approved SRS is the Entry criteria & Input for this phase. 

 

 
Figure-1.  Processing during Mapping Phase 

 

B. Measurement Phase 

In this phase, a set of functional processes is established. Each of those processes encompasses a 

unique set of data movements or data manipulations. 

The Cosmic FFP software model distinguishes four types of data movements:  

 

 Entry, data is moved from the user across the process boundary inside the functional 

process.  



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
42 

© 2015 Conscientia Beam. All Rights Reserved. 

 Exit, data is moved from inside the functional process across the process boundary to the 

users.  

 Read, moves data inside the process from a persistent data store (for example, a 

database).  

 Write, moves data from inside the process to a persistent data store.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2.  Processing during Measurement Phase 

 

4. SIZE ESTIMATION GUIDELINES 

A. Identifying Layers 

a) Functional service software packages such as database management systems, operating 

systems or device drivers are generally considered as distinct layers.  

b) If software is conceived using an established architectural paradigm of layers then uses 

that paradigm to identify the layers.  

c) The software application level is generally considered to occupy the highest layer level.  

d) When in doubt, use the concepts of coupling and cohesion to distinguish between 

interacting layers. 

 

B. Identifying Boundaries 

a) Identify triggering events, and then identify the functional processes enabled by those 

events. The boundary lies between the triggering events and those functional processes.  

b) For real-time or technical software, use the concept of layers to assist in the identification 

of the boundary. 

Prepare message sequence diagram & Aggregate the 

Data movements 

Identify the Read / Write Data Movement 

Calculate CFSU & Record the 1 to 6 step in Size Estimation Sheet 

Identify the Input / Output Data 

Movement e.g. data input on button press 

Review / Rework the Size estimation 



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
43 

© 2015 Conscientia Beam. All Rights Reserved. 

C. Identifying Functional Processes 

a) A triggering event-type gives rise to a triggering Entry-type, i.e. the movement of a data 

group-type defined as comprising a certain number of data attribute-types. If an occurrence of a 

specific event-type triggers the entry of a data group comprising data attributes A, B and C, and 

then another occurrence of the same event-type triggers an entry of a data group which has 

values for attributes A and B only, this is not considered to be a different triggering event-type. It 

is considered to be the same for the purpose of identifying COSMIC-FFP functional processes. 

Thus only one entry and one functional process are identified, manipulating data attributes A, B 

and C.  

b) In the case of real-time software, a functional process is also triggered by an event. It 

terminates when a point of asynchronous timing is reached. A point of asynchronous timing is 

equivalent to a self-induced wait state.  

 

D. Identifying Data Group 

Measurement practice says that in business application software, a data group is identified for 

each „entity-type‟ (or „Third Normal Form‟ relation) found in the normalized data model of the 

measured software. These are usually data groups showing indefinite persistence and the software 

is required to store data about the entity-types concerned.  In COSMIC-FFP, the term „Object of 

interest‟ is used instead of „entity-type‟ or „TNF relation‟ related to specific software engineering 

methods e.g. in the domain of management information software, an Object of interest could be 

„employed‟ (physical) or „order‟ (conceptual) – the software is required to store data about 

employees or orders.  

 

E. Identifying ENTRY (E) 

a) Clock-triggering events are always external to the software being measured. Therefore, an 

event occurring every 3 seconds is associated with an ENTRY moving one data attribute, for 

instance. Even if such a triggering event is generated periodically not by hardware, but a software 

functional process, the later can be ignored in the measurement since it occurs, by definition, 

outside of the boundary of the software being measured. 

b) Unless a specific functional process is necessary, obtaining the time from the system‟s 

clock is not considered as an ENTRY. For instance, when a functional process writes a time 

stamp, no ENTRY is identified for obtaining the system‟s clock value. 

 

F. Identifying EXIT (X) 

When measuring size from the End User Measurement Viewpoint, by convention all 

software messages generated without user data (e.g. confirmation and error messages) are 

considered to be separate occurrences of one message-type. Therefore, a single EXIT is identified 



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
44 

© 2015 Conscientia Beam. All Rights Reserved. 

to represent all these messages within the scope of the functional process where these messages 

are identified.  

For instance, consider functional processes A and B identified within the same layer. “A” can 

potentially issue 2 distinct confirmation messages and 5 error messages to its users and “B” can 

potentially issue 8 error messages to its users. In this example, one EXIT would be identified 

within functional process “A” (handling 5+2=7 messages) and a separate EXIT would be 

identified within functional process “B” (handling 8 messages) [11]. 

 

G. Identifying READ (R) 

a) The data movement retrieves data attributes from a data group in persistent storage.  

b) The data movement retrieves data attributes belonging to only ONE data group, that is, 

data about a single Object of interest. Identify one READ for each Object of interest for which 

data attributes are retrieved in any one functional process  

c) The data movement does not receive or exit data across the boundary or write data.  

d) Within the scope of the functional process where it is identified, the data movement is 

unique, that is, the processing and data attributes identified are different from those of any other 

READ included in the same functional process. 

e) During a functional process, the Read (or a Write) of a data group can only be performed 

on the data describing an Object of Interest to the User. Constants or variables which are internal 

to the functional process, or intermediate results in a calculation, or data stored by a functional 

process resulting only from the implementation, rather than from the FUR, are not data groups 

and are not taken into account in the functional size. 

 

H. Identifying WRITE (W) 

a) The data movement moves data attributes to a data group on the persistent storage side of 

the software.  

b) The data movement moves the values of data attributes belonging to only ONE data 

group that is data about a single Object of interest. Identify one WRITE for each Object of 

interest for which data attributes are referenced in any one functional process.  

c) The data movement does not receive or exit data across the boundary, or read data.  

d) Within the scope of the functional process where it is identified, the data movement is 

unique, that is, the processing and data attributes identified are different from those of any other 

WRITE included in the same functional process.  

e) A requirement to delete a data group from persistent storage is measured as a single Write 

data movement.  



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
45 

© 2015 Conscientia Beam. All Rights Reserved. 

f) During a functional process, the step of storing a data group that does not persist when the 

functional process is complete is not a Write; examples are updating variables, which are internal 

to the functional process or producing intermediate results in a calculation. 

 

5. EXPERIMENTAL RESULTS 

One Cosmic Functional Size Unit (CFSU) is assigned for each entry/exit of a data group 

between front end & software and for each read/write operation by a data group between 

software & back end [12]. COSMIC-FFP function point count, measured in cfsu (COSMIC 

Functional Size Unit), is computed by summing all Entries, Exits, Reads, and Writes. 

     ∑          ∑         ∑         ∑                            

 

                                                   

 

                                              

 

                                            

 

A case study applied on 3 projects for the COSMIC analysis has been shown in Table 1 by 

considering equation (1-4) given above. 

 

Table-1.  CFSU Size Measurement & Effort Calculation 

 

 

 
Figure-3. Graph showing various efforts depending on size. 

 

5. CONCLUSION 

This study uses new estimation methodology for analysis of software estimation using 

COSMIC FFP showing relationships of project effort w.r.t. functional size unit. Cosmic FFP 

provides simple, easy to use, proven & practical solution for estimation of software size, 



Review of Computer Engineering Research, 2015, 2(2): 39-46 

 

 
46 

© 2015 Conscientia Beam. All Rights Reserved. 

productivity, performance and hence quality. The method can be adapted using modern 

methodology like neural network, fuzzy, genetic programming etc. to provide more accurate, 

automated results in terms of effort calculation. 

 

Funding: This study received no specific financial support. 
 

Competing Interests: The authors declare that they have no competing interests. 
 

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.  

 

REFERENCES 

[1] B. Barry, A. Chris, and C. Sunita, "Software development cost estimation approaches – a survey," Annals of 

Software Engineering, vol. 10, pp. 177-205, 2000. 

[2] R. Bridges, "Estimating with confidence: Applying COSMIC method for estimation in the avionics industry," 

European SEPG, pp. 1-22. [Accessed 11-14 June 2007], 2007. 

[3] K. Gaurav and B. Pradeep Kumar, "Automation of software cost estimation using neural network technique," 

International Journal of Computer Applications, vol. 98, pp. 11-17, 2014. 

[4] A. Tharwon, "The development and achievements of software size measurement," in Proc. International Multi 

Conference of Engineers and Computer Scientists (IMECS), 2012. 

[5] L. Kenneth and H. Rogardt, "A model-based and automated approach to size estimation of embedded software 

components," in Proc. of Springer 14th International Conference, 2011, pp. 334–348. 

[6] G. Cigdem, "How to use COSMIC functional size in effort estimation models," in Proc. of Springer International 

Conferences IWSM, 2008, pp. 196-207. 

[7] T. Manar Abu, "Exploratory study on an innovative use of COSMIC-FFP for early quality assessment," PhD 

Thesis in Department of Computer Science and Software Engineering , Montréal,  Concordia University, 

Canada, 2007. 

[8] G. Çigdem, B. Luigi, D. Onur, and E. Pinar, "A case study on the evaluation of COSMIC-FFP and use case 

points," in Proceedings of Smef, 2006, pp. 121-140. 

[9] C. Gennaro, F. Filomena, G. Carmine, T. Genoveffa, and V. Giuliana, "A cosmic-FFP based method to estimate 

web application development effort," in Proc. of Springer 4th International Conference on Web Engineering, 2004, 

pp. 161-165. 

[10] H. Harold Van, "Early estimating using COSMIC-FFP," in Proc. of 2nd Software Metrics Eauropean Forum 

(SMEF), 2005. 

[11] S. Oligny, A. Abran, and C. Symons, "COSMIC-FFP – some results from the field trials," Common Software 

Measurement International Consortium (COSMIC), Citeseer, pp. 1-12, 2000. 

[12] Lois and Clark IT Services, "Project size estimation using cosmic FFP," in Proc. of 2nd Software Metrics 

Eauropean Forum (SMEF,), 2005. 

 

Views and opinions expressed in this article are the views and opinions of the author(s), Review of Computer Engineering Research 
shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content. 

 


