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The discovery of gene-gene interactions to identify complex diseases is one of the 
primary challenges in genome-wide association studies (GWAS). Genetic interactions 
(Epistasis) are typically seen as interactions between various single nucleotide 
polymorphisms (SNPs). Genetic interactions discovery can assist the researchers in 
identifying gene pathways, recognizing gene activity, and discovering potential drug 
targets.  Rough Cluster based Salp Optimization for Epistasis detection (RCSalp-Epi) is 
a two-stage epistasis model that has been evaluated on a variety of simulated disease 
models. In the screening stage, the rough clustering algorithm is employed to partition 
the genotype data into different clusters. The selection stage presents Salp optimization 
with a single objective function (SalpEpi-SO) and multiple objective functions (SalpEpi-
MO) over the clusters to find disease-related SNP combinations. RCSalp-performance 
Epi's is evaluated in comparison with SalpEpi-SO and SalpEpi-MO. The outcome of the 
experimental analysis revealed that RCSalp-Epi-MO is superior to SalpEpi-SO and 
SalpEpi-MO in terms of power and execution time.   
 

Contribution/Originality: The paper's primary contribution is finding the higher order genetic interactions 

with high detection power and minimal computational effort.   

 

1. INTRODUCTION 

The growing interest in medical science is to examine the genetic architecture of diseases, especially non-

Mendelian diseases. It plays a crucial role in predicting complex diseases in human beings [1]. With the recent 

emergence of high-performance genotype technologies, many emphases have been dedicated to identifying the 

correlation between genes and complex diseases. Both genetic and environmental risk factors increase 

pathogenicity. Genome-wide association studies (GWAS) researchers aim to find genotype variants of interest for 

several diseases such as hypertension, rheumatoid arthritis, cancer, chronic illness, cardiovascular disease, diabetes, 

psoriasis, etc. [2]. The principal aim of GWAS is to associate the related genetic variants to phenotypic traits of 

interests, especially a disease [3]. GWAS incorporates extensive data collection to trace phenotypes and genetic 

markers linked with disease [4]. Single Nucleotide Polymorphisms (SNPs) are a typical marker of genetic 

variations that play a crucial role in many complex disease traits [5]. The SNP is a sequence variation in DNA 

dependent on the four nucleotides Cytosine (C), Thyamin (T), Adenine (A), and Guanine (G), and also modifies the 

amino acid sequence  [6]. By analyzing the gene regulatory pathways, each SNP is linked to a set of characteristics 

that can be used to classify the genetic predisposition of diseases [7]. Several approaches for Gene-Gene Interaction 
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(GGIs) detection have been employed in recent years. Epistasis detection can currently be achieved using stochastic 

search, exhaustive search, and optimization-based methods. An exhaustive search can return all SNP combinations, 

but the computational cost is prohibitive [8]. It calculates the score for each SNP interaction and then uses the 

user-specified threshold to make a disease correlation determination. The epistasis based stategies such as PLINK, 

MDR, BOOST, GMDR-GPU are assessed using exhaustive analysis [9]. The Multifactor Dimension Reduction 

(MDR) methodology was employed in 2001 to search for GGIs related biomarkers in breast cancer genotype data 

[10]. Boolean Operations-Based Screening and Testing (BOOST) method uses screening and testing stages to 

evaluate GGIs. A non-iterative strategy was widely adopted during the screening process to determine the 

statistical probability ratio of all SNP pairs, and a distinctive SNP pair was chosen based on the threshold defined 

by the user. The probability ratio test was performed to quantify the selected SNP combinations during the test 

process [11]. 

The stochastic search strategies identify effects of disease correlated epistasis using random sampling. The 

stochastic search takes far less time to complete than an exhaustive search Since it is influenced by the random seed 

[12]. BEAM, SNPRuler algorithm uses random sampling techniques to evaluate SNP combinations. SNPRuler 

adapts a predictive rule inference strategy to describe rules in the SNP subset, and these rules are used to infer 

epistatic interactions [13]. Bayesian Epistasis Mapping Association (BEAM) examines disease-related markers and 

the correlations through the Bayesian partitioning model. It estimates the posterior likelihood ratio of each diseased 

SNP markers via Markov Chain Monte Carlo (MCMC) [4]. 

The exhaustive and stochastic algorithms lead to a high computational cost and affinity for specific disease 

models. In recent times, evolutionary methods for GGIs detection have been of great concern to minimize 

computational costs since they efficiently solve NP-hard issues in polynomial times [14]. The evolutionary 

strategies minimize search time complexity and the scoring functions used to determine the better SNP 

combinations. A multi-objective ant colony optimization technique (MACOED) was introduced for the detection of 

genetic interactions. ACO is practiced to filter SNPs in the screening stage and the filtered SNPs passed into the 

clean stage to detect significant SNP combinations using the chi-square test [15]. Epistasis based on Ant Colony 

Optimization Algorithm (epiACO) was introduced to recognize SNP interactions. The different strategies for path 

selection and a memory-based approach are adapted to improve epiACO [16]. An Epistatic Interaction Multi-

Objective Artificial Bee Colony Algorithm Based on Decomposition (EIMOABC/D) model was suggested for 

epistasis interaction detection. Bayesian score and the Gini score are adopted as objective functions to characterize 

different epistatic models [17]. The multi-objective bat optimization algorithm (epiBat) was presented for epistasis 

identification using the Gini score and K2 score as the fitness function. Finally, the G test assesses the significance 

of the identified disease-related SNP pairs [18]. The primary problem of presently accessible epistasis algorithms is 

always incurring a huge computational cost and minimal detection power. Compared to the presently available 

methods, the proposed method aims to classify disease-correlated SNPs with huge detection capacity and minimal 

runtime.  

We have recently introduced a two stage approach based on KMeans clustering, pillar algorithm and salp 

optimization technique (KMeans-Pillar-SalpEpi) for epistasis detection. The KMeans-Pillar-SalpEpi involves high 

computational complexity since K-Means approach leads to inconsistent cluster group for different runs due to 

optimal centroids and hence hybrid with pillar optimization to increase the efficiency [19]. This research 

introduced a novel epistasis detection strategy with a two-stage process called Rough Cluster-based Salp 

Optimization for Epistasis detection (RCSalp-Epi) to identify multi-locus SNP interactions. Traditional clustering 

assigns items to non-overlapping groups on the basis of a similarity score. The borders of these groups or clusters 

may not be precisely defined in the real world. Some of the objects may be nearly equidistant from the cluster's 

centroid. These objects must be assigned to a single cluster according to traditional set theory. The overlapping 

clusters can be represented using rough set theory. Compared to the k-means clustering approach, rough sets give a 
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more flexible representation. At the screening phase, the Rough K-means algorithm is employed to partition the 

genotype data into different clusters. In the search phase, two distinct strategies, such as exhaustive search and Salp 

optimization with G-test over the clusters to detect the disease-relevant SNP pairs. The main scope of this research 

is to establish a rapid and efficient epistasis detection model RCSalp-Epi to discover disease-related SNP-SNP 

interactions from hundreds of SNPs. Here, we have fixed the following primary objectives to accomplish our 

research goal. 

• A Rough Cluster-based Salp Optimization for epistasis detection (RCSalp-Epi) is developed to detect disease-

related SNPs in genotype data. The proposed approach is intended to detect high order epistasis interactions 

with reduced running time.  

• The performance of RCSalp-Epi is measured over the disease models with marginal effects (DMEs) and 

disease models with no marginal effects (DNMEs). 

The structure of the research work is arranged as follows. Section II discusses the material and methods used 

for epistasis detection. Section III outlines the detailed description of the RCSalp-Epi algorithm. Section IV 

explores experimental results and discussion. Finally, Section V summarizes this article with future scope. 

 

2. MATERIALS AND METHODS 

In this section, we formally introduce the two components of RCSalp-Epi approach such as Rough K-means 

cluster and Salp Swarm Algorithm (SSA) for genetic interactions identification. Rough K-Means clustering 

technique is adapted in the screening stage to group SNPs into three clusters. The SSA is applied in the selection 

stage to find high order SNP combinations. 

 

2.1. Rough K-Means Clustering Technique 

Lingras [20] developed the rough k-means algorithm by hybridizing rough set theory and the k-means 

technique [20]. It is a heuristic way of depicting each cluster based on the centre of a cluster. To cope with the 

complexity involved in cluster analysis, the Rough K- means algorithm combines a rough set-theoretic flavor to the 

traditional k means algorithm. The features of this algorithm are:  

(1) A data object can only bound lower approximation of one class. 

(2) If a particular object cannot be assigned to a class's lower approximation, it must be assigned to two or more 

classes' upper approximations. 

(3) Each class's lower approximation is a subset of the same class's upper approximation. 

Let us consider,  is the set of upper approximation of class Ck and is the set of lower approximation of class 

Ck. The centroid Cj can be calculated in the following ways 

      If   

 
      Else 

         If  
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       Else 

 
 

2.2. Salp Swarm Algorithm (SSA) 

Salp swarm algorithm (SSA), a population-based optimization [21]. The SSA imitates salps' social actions as 

they are collected in a chain during their sailing and foraging for foods in the sea. Two kinds of agents present in 

SSA: The leader leads the salp chain; the remaining salps are followers; the leader controls the population's 

movement path; supporters follow the leader one by one.  

The salp population size is N, which denotes the number of SNPs, and its location is defined in the D 

dimensional search space. The salps positions are interpreted in a two-dimensional coordinate system that has N 

rows and D columns. The best global search solution is described as F, which is responsible for the foraging target 

of the swarm. The leader’s position is generated by Equation 1 as follows:  

                           

                                            (1) 

where, 

 represents the position of the salps in kth dimension. 

indicates the location of the food in kth dimension. 

 represents the upper limit of the kth dimension. 

represents the upper bound of the kth dimension. 

 indicates random numbers. 

The convergence factor c1 aid the process of exploration and exploitation, which is calculated using the 

Equation 2.  

                                            (2) 

Where t denotes the present iteration count and the maximum iterations are represented in T. are 

randomly generated numbers within the interval [0, 1]. 

The follower’s position is updated as shown in Equation 3. 
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                                                (3) 

All salps did not determine the location of the target (feed) during the actual iteration. During the iterative 

process, the fitness values of all the salps are computed, and the salps with the best scoring value are chosen as the 

current best food position. 

 

3.  FRAMEWORK OF ROUGH CLUSTER BASED SALP OPTIMIZATION FOR EPISTASIS 
DETECTION (RCSALP-EPI) 

The RCSalp – Epi consists of two stages, such as screen and clean stage. The objective of the screen and the 

clean stage is exposed in Figure 1. The general structural design of the proposed system is expressed in Figure 2. 

In the screening stage, the rough K-means clustering technique partitions the SNPs into three clusters. These 

clusters are passed to the selection stage to detect disease related SNP combinations. A detailed description of the 

screen and selection stage is exposed in section 3.1 and 3.2. 

 

 
Figure-1. Stages of RCSalp-Epi approach. 

 

 
Figure-2. General Structure of RCSalp-Epi. 

 
3.1. Screen Stage – Rough K- Means Clustering Technique  

The genotype dataset is separated into three different clusters using the rough clustering technique in the 

screening stage.  Based on a similarity measure, traditional clustering procedures segments a group of items into 
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various non-overlapping clusters. The boundaries of these segments may not be accurately defined in the real 

world. Some objects can close to the centre of the cluster. These objects are consigned to a single cluster according 

to traditional set theory. The overlapping clusters can be represented using rough set theory. The main advantage 

of the rough clustering strategy is that it avoids local optimum and groups all SNPs into a distinct set of clusters 

for each iteration. The pseudo-code of the screen is exhibited in Figure 3. 

 

Stage 1 – Rough K Means Clustering for grouping SNPs for Epistasis Detection  
Input  
Data: Simulated dataset 
k: number of clusters 
Wlower  
Wupper 
Output 
Three Clusters consists of various SNPs 
Screen Stage 
Step 1: Randomly assign each SNPs into lower approximization. 
Step 2: Calculate new mean value by finding the no. of elements in the lower bound and the upper bound. 
Step 3: Find the distance between each SNPs and centroid 
Step 4: Find the objects whose difference is less than epsilon and keep the object in upper bounds of  cluster 
Step 5: Repeat steps (2) to (4) until convergence. 

Figure-3. Pseudo Code of RCSalp-Epi in Screen Stage 

 

3.2. Selection Stage - Salp Optimization for Epistasis Detection 

In the selection stage, the size of each cluster is checked. Then, an Exhaustive search is adapted for the clusters 

with less number of SNPs. For large cluster sets, SSA is adapted to identify the epistasis effects. The G-test is used 

as a fitness function for SSA. The Salp with SO (SSO) and Salp with MO (SMO) optimization are proposed to find 

the significant disease associated SNPs. The fitness function for SalpEpi-SO is G-test, while SalpEpi-MO utilizes 

the K2 and AIC score as fitness functions. The pareto optimal approach aid to choose non-dominated SNPs from the 

large volume of SNPs. Then, non-dominated SNPs are passed into G-test to find disease correlated SNPs for 2-

locus and 3-locus models. The pseudo-code of selection stage for RCSalp-Epi is presented in Figure 4. 

 

Stage 2 – Salp Optimization for finding Significant SNP Combinations 
Input  
Data: Simulated dataset based on selected featured indexed SNPs from screen stage 
N: number of Salp 
m: interaction order 
max_iter: Maximum iterations 
Output 
Optimal SNP pairs 
Selection Stage – SalpEpi-SO 
Step 1: Initialize the necessary parameters for SSA. 
Step 2:  Every salp is assigned a random position in the population based on the SNPs in the feature set. 
Step 3: Repeat the step until maximum iterations reached  
Choose a combination of SNPs for each salp in the solution space and generate a local solution through G-test. 
Choose a source of food from repository: F=SelectFood(repository)  
For each salp (xi)  
if(i==1)  
Update the position of the leader salp 
else  
Update the position of the follower salp  
end  
end 
The Salp evaluates new combinations of SNPs and Compared it with the previously stored solution space and 
update the current solution.             
End for         
End while  
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Selection Stage – SalpEpi-MO 
Steps 1 through 3 in SalpEpi-SO are the same in SalpEpi-MO. 
Step 4:  The Non-dominated SNPs are returned by the Pareto optimal technique. 
Step 5: For k=1 to no. of SNPs in non-dominated solution 
For l =k+1 to no. of SNPs in non-dominated solution 
GGIs_pair = G-test (xk, xl) 
End For 

Figure-4. Pseudo Code of RCSalp-Epi in Selection Stage 

 

4.  EXPERIMENTAL ANALYSIS AND DISCUSSION  

Two simulation models, such as the Disease loci without marginal effects (DNME) and Marginal Effect 

Disease (DME) models, are considered to evaluate the robustness of the proposed SalpEpi-MO model. Sections 4.1 

and 4.2 describe the simulations models and evaluation metrics, respectively. MATLAB R2018(b) is used to 

implement the proposed epistasis models. The experimental results of simulated disease models are revealed in 

Section 4.3.  

 

4.1. Simulated Datasets 

The efficacy of the RCSalp-Epi algorithm is measured over simulated datasets of various disease models. A 

disease model is characterized as the likelihood of being affected by the disease given a mixture of SNPs. For a 

disease model, these probabilities are gathered in a penetrance table. A penetrance is denoted by P(D|Gi), where D 

represents someone affected by the disease, and Gi denotes the ith genotype combinations of SNPs.  GAMETES 2.0 

is commonly used to build genotype simulation datasets. We created two-locus disease models in this study [22]. 

Two unique types of epistatic models are produced for two-locus analysis in order to identify diseases: DME and 

DNME models. DME model characterizes the interactive and marginal effects of the disease. Three gene models 

such as additive, multiplicative and threshold models are chosen for three-locus and two-locus analysis [23]. 

DNME model reveals only interactive effects without marginal effects. Gametes were used to construct the data 

sets for the study, which were varied in terms of heritability h2 and Minor Allele Frequency (MAF), and disease 

prevalence rate P(D). Table 1 lists the DME and DNME models that were chosen for experimentation. 

 

Table-1. Simulated epistasis dataset details. 

Dataset  Model Number of Models SNP Particulars Description 

3-Locus model 

DME epistasis 
models - Additive, 
Multiplicative, 
Threshold  

5 Models 

A total of 97 non-
pathogenic SNPs 
and 3 disease 
related SNPs  
 

Datasets size - 100 
Samples size – 1600 
with 800 cases and 
controls 

DNME Models 10 Models 

2-Locus model 

DME epistasis 
models - Additive 
Model, 
Multiplicative, 
Threshold models 

4 Models 

2 disease 
correlated SNPs 
including 
98 Non-
Pathogenic SNPs  
 DNME Models 10 Models 

 
4.2. Performance Metrics 

The suggested epistasis detection model's efficacy is assessed utilizing evaluation criteria such as power. The 

statistical procedure of discovering true disease locus by neglecting the null hypothesis is known as power, and it is 

expressed as. 
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where #DC denotes the number of data sets of are successful in the detection of disease-associated SNPs is 

reported among Total Data Sets (TDS) [24]. 

 

4.3. Simulation Results and Interpretation 

The goal of GWAS is to find relationships between SNPs and phenotypes. The epistasis identification is 

essential for determining human genetic disease susceptibility. RCSalp-Epi’s is contrasted to SalpEpi-SO [19] and 

SalpEpi-MO [19] techniques for epistatic identification.  

 

4.3.1. Experimental Analysis of 2-Locus DME Models 

The power of SalpEpi-SO [19] SalpEpi-MO [19] RCSalpEpi-SO and RCSalpEpi-MO for 12 DME models is 

exhibited in Figure 5. In the additive model, RCsalpEpi-SO and RCSalpEpi-MO achieved 100% power for model 3 

and 4. For additive model  1, RCsalpEpi-MO yielded the power of 5%, whereas SalpEpi-SO and RCSalp-Epi gained 

the power of 1. SalpEpi-MO did not detect any disease causative SNPs. RCsalpEpi-MO obtains the highest power 

of 94% for additive model 3, which is superior to others.  

 For multiplicative model 1, none of the four techniques discovered any disease-related SNPs. The RCSalpEpi-

SO and RCSalpEpi-MO obtained 100% of power for model 2, which is 2% and 10% higher than SalpEpi-SO and 

SalpEpi-MO, respectively. In multiplicative model 3, SalpEpi-MO [19] obtained the maximum power of 20%, 

which is 18% superior to RCSalpEpi-MO. In multiplicative model 4, SalpEpi-SO [19] RCSalpEpi-SO and 

RCSalpEpi-MO yielded the power of 13%, while SalpEpi-MO attained the power of 7%. RCSalpEpi-MO discovers a 

single illness causal SNP pair across 100 datasets in Threshold model 1, but the other three techniques have a 

power of 0.  The power of 42% is yielded by RCSalpEpi-MO in Threshold model 2, whereas the SalpEpi-MO 

produced 20% power. In threshold model 3, RCSalpEpi-MO achieved 100% accuracy, 7%, 1%, and 4% superior to 

SalpEpi-SO [19] SalpEpi-MO [19] and RCSalpEpi-SO, respectively. According to threshold model 4, the power 

produced by all three methods hit 100%, while SalpEpi-SO [19] obtained 84% of its power. 

 

 
Figure-5. Detection Power of 2-Locus DME Models. 

 

Figure 6 shows the runtime of 12 DME models in 2-locus category. The proposed RCSalpEpi-SO technique 

consumes the lowest runtime compared to all 12 DME models. For majority of the 12 DME models the SalpEpi-

MO [19] technique takes the highest time. The running time of SalpEpi-SO [19] is superior to SalpEpi-MO [19]. 
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Compared to SalpEpi-MO [19] Rough clustering with SalpEpi-MO requires the lowest runtime. The runtime of 

additive model 3 and additive model 4, Multiplicative model 3 and 4 and threshold model 4 pay less than one 

minute in rough clustering-based approaches such as RCSalpEpi-SO and RCSalpEpi-MO. Since the rough cluster 

split these datasets into below 10 SNPs, these models were directly entered into exhaustive search instead of 

searching through Salp optimization. It is concluded that RCSalpEpi-SO and RCSalpEpi-MO is superior to 

SalpEpi-SO [19] and SalpEpi-MO [19] in connection with runtime for all 12 DME models. 

 

 
Figure-6. Running time comparison of 2-Locus DME Models. 

 

4.3.2. Experimental Results of 2-Locus DNME Models 

Figure 7 exposes the power of four approaches of the 2-Locus DNME models. With the exception of model 3 

and model 4, RCSalpEpi-MO obtained 100% power for all ten DNME variants. The RCSalpEpi-SO only attained 

100% power for model 7. In the case of model 8 and model 9, the SalpEpi-MO [19] provided 100 percent power. 

For model 9, the SalpEpi-SO [19] has the maximum detection capability of 97 percent. The result designates that 

the proposed approach RCSalpEpi-MO is superior to others.  

Figure 8 presents the runtime of 2-locus DNME models. The RCSalpEpi-SO requires less time duration than 

the other approaches in 10 DNME variants. For all 10 models, the SalpEpi-MO [19] approach requires the most 

time to run. In model 4 and model 6, the execution time of RCSalpEpi-MO and SalpEpi-SO [19] are almost 

identical. Similarly, SalpEpi-MO [19] and RCSalpEpi-MO take the same execution time in model 3. The 

RCSalpEpi-SO requires minimal execution time in comparison with SalpEpi-MO and SalpEpi-SO approaches. It is 

concluded that the execution time of Rough clustering-based approaches such as RCSalpEpi-SO and RCSalpEpi-

MO requires less duration for execution compared to SalpEpi-SO [19] and SalpEpi-MO [19].  

 

 
Figure-7. Performance Comparison of 2-Locus DNME Models. 
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Figure-8. Runtime Assessment of 2-Locus DNME Models. 

 
4.3.3. Experimental Results of 3-Locus DME Models 

The power of SalpEpi-SO [19] SalpEpi-MO [19] RCSalpEpi-SO and RCSalpEpi-MO for 15 3-Locus DME 

models is presented in Table 2. RCsalpEpi-MO achieved 57% of power for additive model 1, which is superior to 

other approaches. When it came to additive model 2, the SalpEpi-SO [19] had the lowest power of 6 percent, but 

the RCSalpEpi-MO had the highest power of 30 percent. The RCSalpEpi-MO and SalpEpi-MO [19] yielded 69% 

and 62% power, respectively, for additive model 3. RCSalpEpi-MO outperformed the other three techniques with 

the highest power of 72 percent for additive model 4. RCSalpEpi-MO obtained power of 82% for model 5, which is 

78%, 12%, 66% superior to SalpEpi-SO [19] SalpEpi-MO [19] RCSalpEpi-SO, respectively. RCSalpEpi-MO in 

multiplicative model 5 has the better detection accuracy of 76 percent. In threshold models, the performance of 

RCSalpEpi-MO is superior to others for all models. Threshold model 5 has the having maximum power of 82 

percent. SalpEpi-SO [19] on the other hand, has the minimum detection performance of 1% in model 2. For 

threshold model 4, SalpEpi-MO yielded a power of 1% higher than RCSalpEpi-MO. Except for threshold model 4, 

the experimental results showed that RCSalpEpi-MO outperforms others for fourteen DME models. 

 

Table-2. Performance examination of 3-Locus DME Method. 

The runtime examination of 3-Locus DME models is exposed in Table 3. When compared to SalpEpi-SO [19] 

and SalpEpi-MO [19] the RCSalpEpi-SO and RCSalpEpi-MO had the shortest running time among the 15 DME 

models. For all 15 DME models, the SalpEpi-MO method has the longest execution time. The execution time of 

RCSalpEpi-MO is superior to SalpEpi-SO [19] SalpEpi-MO [19]. In additive model 4, SalpEpi-MO [19] requires 

161 minutes, whereas RCSalpEpi-MO and RCSalpEpi-MO require 32 and 30 minutes, respectively. RCSalpEpi-MO 

needs 114 minutes to run the additive model 3, which is 13 minutes higher than SalpEpi-SO [19]. In multiplicative 

model 1, the running time of SalpEpi-MO [19] is 125 minutes which is 91 minutes, 83 minutes higher than 

RCSalpEpi-SO and RCSalpEpi-MO, respectively. In all the 15 3-locus DME models, SalpEpi-MO [19] and 

SalpEpi-SO [19] requires more execution duration compared to others. Hence, it is concluded that Rough 

clustering-based approaches outperform others in terms of running time. 

            Model 
Methods 

Additive  Models Multiplicative Models Threshold  Models 

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

SalpEpi-SO 11 6 40 47 4 2 3 1 2 67 3 1 56 4 5 
SalpEpi-MO 43 12 62 67 70 2 2 6 8 70 6 4 66 75 74 
RCSalpEpi-SO 27 10 53 59 16 10 6 4 3 73 10 7 67 19 18 
RCSalpEpi-
MO 

56 30 69 72 82 21 16 8 14 76 20 11 79 74 82 
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Table-3. Running time of 3-locus DME method. 
 

            Model 
Methods 

Additive  Models Multiplicative Models Threshold  Models 

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

SalpEpi-SO 67.3 77.9 100.7 79.1 108.8 69.7 89.1 68.3 108.6 72.8 86.6 66.4 79.9 81.4 80.0 
SalpEpi-MO 107.8 102.3 135.1 161.2 113.7 125.3 95.7 101.9 111.4 110.5 94.5 106.5 113.2 153.0 146.7 
RCSalpEpi-SO 36.9 33.1 34.9 30.4 31.2 34.3 34.3 39.1 43.4 29.9 34.4 33.9 36.3 27.4 35.6 
RCSalpEpi-MO 66.4 47.2 42.1 31.8 30.4 42.1 52.8 42.7 46.5 31.8 36.5 44.7 49.2 22.6 36.6 
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4.3.4. Experimental Results of 3-Locus DNME Models 

The power of SalpEpi-SO [19] SalpEpi-MO [19] RCSalpEpi-SO and RCSalpEpi-MO for 10 3-Locus DNME 

models is shown in Figure 9. RCSalpEpi-SO achieves the best accuracy of 73 percent in Model 3. SalpEpi-SO in 

Model 1 yields the minimum power of 1 percent. In Model 9, RCSalpEpi-MO yielded the power of 20% which is 

22% lower than RCSalpEpi-SO. RCSalpEpi-SO outperforms the competitors in six models: Models 1-2, and Models 

6-9. Similarly, RCSalpEpi-MO approach is superior to other approaches in 4 models such as Model 3, Model 4, 

Model 5, Model 10. The experimental outcome clearly revealed that Rough clustering based approaches is superior 

to SalpEpi-SO [19] and SalpEpi-MO [19] in 3-Locus DNME models.  

 

 
Figure-9. Performance Analysis of 3-Locus DNME Models. 

 

The execution time of ten 3-Locus DNME epistasis models is presented in Figure 10.  The line chart proved 

that the RCSalpEpi-SO and RCSalpEpi-MO requires the lowest runtime for ten DNME models. SalpEpi-MO [19] 

approach avail the high runtime in all the ten DNME models. The experimental analysis proved that Rough 

clustering-based approaches perform superior than others in connection with running time. 

 

 
Figure-10.  Runtime evaluation of 3-Locus DNME Models. 
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5. CONCLUSIONS 

The identification of possible genetic interactions is a critical and difficult problem in GWAS. In this article, we 

suggest a two-step approach called RCSalpEpi-SO and RCSalpEpi-MO to detect epistasis effects. RCSalp-Epi 

employs a rough clustering technique to partition the large genotype dataset into three clusters. During the 

selection step, the suggested methods are more suited for detecting higher-order SNP interactions, and they can use 

either of two distinct strategies: exhaustive or optimization-based search. Exhaustive search is employed on a 

narrow clustered dataset, whereas salp-based search is used on a huge candidate set. The proposed approach 

discovers high-order genetic interactions with minimal computational effort and high detection power. For both 

DNME and DME models, experimental findings showed that RCSalpEpi-SO and RCSalpEpi-MO are superior to 

SalpEpi-MO and SalpEpi-SO. The future scope of this research works may be extended to assess the real datasets 

for diagnosing complex diseases in human.  
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