

76

© 2021 Conscientia Beam. All Rights Reserved.

A SIMPLE AND EFFECTIVE METHODOLOGY FOR GENERATING BOUNDED
SOLUTIONS FOR THE SET K-COVERING AND SET VARIABLE K-COVERING
PROBLEMS: A GUIDE FOR OR PRACTITIONERS

 Bryan McNally1

 Yun Lu2

 Emre Shively-
Ertas3

 Myung Soon Song4

 Francis J. Vasko5+

1,3Computer Science Department, Kutztown University, Kutztown, PA, USA.
1Email: bryanjames@mcnally.io Tel: 484-425-0419
3Email: eshiv901@live.kutztown.edu Tel: 610-360-8734
2,4,5Department of Mathematics, Kutztown University, Kutztown, PA, USA.
2Email: lu@kutztown.edu Tel: 610-207-7133
4Email: song@kutztown.edu Tel: 412-477-2313
5Email: vasko@kutztown.edu Tel: 610-704-5469

(+ Corresponding author)

 ABSTRACT

Article History
Received: 13 October 2021
Revised: 1 December 2021
Accepted: 7 December 2021
Published: 10 December 2021

Keywords
Simple sequential increasing
tolerance matheuristic
Set K-covering problem
Set variable K-covering problem
General purpose integer
programming software.

.

As generalizations of the classic set covering problem (SCP), both the set K-covering
problem (SKCP) and the set variable (K varies by constraint) K-covering problem
(SVKCP) are easily shown to be NP-hard. Solution approaches in the literature for the
SKCP typically provide no guarantees on solution quality. In this article, a simple
methodology, called the simple sequential increasing tolerance (SSIT) matheuristic,
that iteratively uses any general-purpose integer programming software (Gurobi and
CPLEX in this case) is discussed. This approach is shown to quickly generate solutions
that are guaranteed to be within a tight tolerance of the optimum for 135 SKCPs
(average of 67 seconds on a standard PC and at most 0.13% from the optimums) from
the literature and 65 newly created SVKCPs. This methodology generates solutions
that are guaranteed to be within a specified percentage of the optimum in a short time
(actual deviation from the optimums for the 135 SKCPs was 0.03%). Statistical
analyses among the five best SKCP algorithms and SSIT demonstrates that SSIT
performs as well as the best published algorithms designed specifically to solve SKCPs
and SSIT requires no time-consuming effort of coding problem-specific algorithms—a
real plus for OR practitioners.

Contribution/Originality: This study documents a methodology that iteratively uses integer programming

software to efficiently generate solutions that are guaranteed to be very close to the optimums for the set K-

covering problem. A significant benefit of this methodology is that no problem specific algorithm needs to be coded

by the user.

1. INTRODUCTION

The set k-covering problem (SKCP) is a generalization of the classic set covering problem. The SKCP involves

finding the columns of an m x n 0-1 matrix that cover each row of the matrix at least k times at minimal cost (the

classic set covering problem only covers each row at least once). The SKCP can be mathematically represented as

the following integer program:

Minimize (1)

Review of Computer Engineering Research
2021 Vol. 8, No. 2, pp. 76-95.
ISSN(e): 2410-9142
ISSN(p): 2412-4281
DOI: 10.18488/journal.76.2021.82.76.95
© 2021 Conscientia Beam. All Rights Reserved.

https://orcid.org/0000-0003-3532-1931
https://orcid.org/0000-0003-2296-425X
https://orcid.org/0000-0003-3404-5971
https://orcid.org/0000-0001-7988-2242
https://orcid.org/0000-0001-8975-0999
mailto:bryanjames@mcnally.io
mailto:eshiv901@live.kutztown.edu
mailto:lu@kutztown.edu
mailto:song@kutztown.edu
mailto:vasko@kutztown.edu
https://www.doi.org/10.18488/journal.76.2021.82.76.95

Review of Computer Engineering Research, 2021, 8(2): 76-95

77

© 2021 Conscientia Beam. All Rights Reserved.

Subject to (2)

{0,1}jx  , {1,2,..., }j n  (3)

Algebraic expression (1) is the objective function which must be minimized. Inequalities (2) are the constraints

that guarantee each row i is covered by at least k columns, and conditions (3) force each variable xj to be either 0 or

1. The set variable K-covering problem (SVKCP) has the same formulation as the SKCP except that the value of K

can be different for each of the m constraints in (2). Note that, to the authors’ knowledge, no solution procedures or

problem instances currently exist in the literature for the SVKCP.

The SKCP has a number of important real-world applications and plays a significant role in many areas, such as

scheduling, location, marketing, logistics, computational biology, and wireless networks [1]. For example, in

communication or distribution problems where reliability is important, it is not sufficient to cover each element

only once. Another application of the SKCP comes from the domain of bioinformatics. Researchers divide

chromosomes into two regions: hot spots, where chromosome recombination takes place, and haplotype blocks,

which complement the chromosomes. If we want each pair of the haplotype patterns to be distinguished by k or

more mutations or single nucleotide polymorphisms (SNPs), then we have a robust tagging SNP problem which

can be modeled as a SKCP [2].

The SVKCP is a straightforward extension of the SKCP in which the K value can differ for each row constraint.

Although, to the authors’ knowledge, the SVKCP has not been explicitly studied in the literature, one can easily

envision real-world applications of the SVKCP. For example, if a geographic area needed to be serviced by fire

stations, the optimal location of the fire stations could be formulated as a SVKCP. Each row of the matrix in this

SVKCP would represent a neighborhood that should be serviced by at least two fire stations (one primary and one

backup), but some neighborhoods might need to be serviced by more than two fire stations (for example, a

neighborhood with a hospital in it).

It is important to note that the problems (SKCP and SVKCP) that are being addressed in this research both

require that all rows of a matrix be covered by K columns at minimum cost (K varies by row for the SVKCP).

However, there are related problems in the literature that have similar names, but different objectives. Specifically,

the maximum set K-covering problem (MKCP) consists in selecting a subset of K columns from a given set of n

columns, in such a way that the number of rows covered by the selected columns is maximized (see Lin and Guan

[3]). Another related problem is the K-set cover problem (K-scp) that seeks to cover all rows of a matrix with the

minimum number of columns such that each column chosen can cover at most K rows (see HAE, et al. [4]).

As extensions of the classic set covering problem, both the SKCP and the SVKCP can easily be shown to be

NP-hard. To avoid the potential for excessive computing times, up to this point, solutions reported in the literature

for the SKCP (note that the SVKCP has not previously been discussed in the literature) have not guaranteed the

quality of their solutions.

Normally in the literature, for a set of test problem instances, approximate solution method results are

compared to optimal or best-known results that were determined by executing an exact algorithm for a long period

of time—sometimes up to 24 hours [5] or more! Researchers assume that, if an approximate solution method

performs well on a limited set of problem instances, it will perform well on other problems—this is the weakness of

using approximate solution methods with no guaranteed bounds on solution quality. Such approximate solution

methods will be discussed in the next section and include methods by Al-Shihabi [6]; Pessoa, et al. [5]; Salehipour

[7] and Wang, et al. [8]; Wang, et al. [9].

In this article a methodology first discussed in McNally [10] referred to as the simple sequential increasing

tolerance (SSIT) matheuristic is used to quickly solve 135 SKCPs commonly used in the literature and 65 SVKCPs

introduced in this article. Lu, et al. [11] used SSIT to quickly (average of 88 seconds on a standard PC) generate

Review of Computer Engineering Research, 2021, 8(2): 76-95

78

© 2021 Conscientia Beam. All Rights Reserved.

solutions guaranteed to be close (average within 0.094% of the optimums) on 270 multidimensional knapsack

problem (MKP) instances commonly used in the literature. These results are far better than other published

metaheuristic results for the MKP. Dellinger, et al. [12] used SSIT to quickly (average of 63 seconds on a standard

PC) generate solutions guaranteed to be close (average within 0.080% of the optimums) on 51 generalized

assignment problems (GAP) instances commonly used in the literature. These results are very competitive with the

best published solution methods for the GAP.

The key feature of the SSIT solutions is that they are guaranteed to be within a tight tolerance of the optimum.

Another important feature of SSIT is its iterative use of any general-purpose integer programming software

(Gurobi and CPLEX in this article, but other software could be used just as easily). This combined with a user-

defined sequence of loosening tolerances and maximum execution times for each tolerance makes SSIT a very

flexible solution methodology. SSIT can be considered a matheuristic because it uses math programming combined

with a heuristically determined sequence of tolerances and execution times. Since SSIT takes advantage of the

power of a general-purpose exact solution method, no problem-specific algorithm is required which can be a

substantial time saver for operations research (OR) practitioners.

In the next section, the relevant literature will be reviewed. Then, a brief overview of the SSIT matheuristic

will be provided in Section 3. In Sections 4 empirical results obtained from using the SSIT matheuristic to solve

135 SKCPs will be discussed and statistically compared to the leading published solution approaches specifically

designed to solve the SKCP. In Section 5 empirical results for 65 SVKCPs will be presented. This article will close

with some conclusions and suggested future work.

2. RELEVANT LITERATURE

The five main solution approaches designed specifically to solve the SKCP that appear in the literature are:

DLLCCSM (diversion local search based on configuration checking and scoring mechanism). This

algorithm is presented in Wang, et al. [8] and uses a local search algorithm. First, to overcome the cycling

problem in local search, the set k-covering configuration checking (SKCC) strategy is proposed. Second, a cost

scheme of elements is used to define a scoring mechanism. Then, the SKCC strategy and scoring mechanism are

combined to decide which subset should be selected as a candidate solution component.

MLQCC (multilevel score heuristic with quantitative configuration checking). This algorithm is

presented in Wang, et al. [9] and uses a local search algorithm. To overcome the cycling problem in local search, a

new quantitative configuration checking (QCC) is proposed. Also, a subset property called subscore, redefines

property score [8]. A new multilevel (ML) score heuristic, which is a linear combination of subscore and score is

developed.

SALEHIPOUR_HEURISTIC. This algorithm is presented in Salehipour [7] and is a heuristic that first

generates a lower bound and then builds a feasible solution from the lower bound. The feasible solution is improved

through a removal local search.

LP-MMAS_LS. This algorithm is presented in Al-Shihabi [6] and uses a hybrid algorithm consisting of linear

programming, max-min ant system and local search. The algorithm exploits the LP-relaxation solution by

classifying the columns based on their reduced costs.

LAGRASP. This algorithm is presented in Pessoa, et al. [5] and uses a hybrid GRASP (greedy randomized

adaptive search procedure) Lagrangean heuristic that uses GRASP with a path-relinking heuristic that uses

modified costs to obtain approximate solutions.

The performance of these five approximate solution methods on 135 SKCPs will be compared both empirically

and statistically in a later section to results obtained from using several SSIT scenarios with Gurobi to solve these

same 135 SKCPs. However, it is important to remember that all the above-mentioned solution procedures are

explicitly designed to solve the SKCP and more importantly provide no guarantees on solution quality! This is in

Review of Computer Engineering Research, 2021, 8(2): 76-95

79

© 2021 Conscientia Beam. All Rights Reserved.

sharp contrast to our use of SSIT to solve SKCPs because SSIT uses strictly general-purpose software with no

time-consuming algorithm coding required and does provide bounds on the solutions that it generates.

3. OVERVIEW OF THE SIMPLE SEQUENTIAL INCREASING TOLERANCE

MATHEURISTIC

The motivation [10] behind the simple sequential increasing tolerance (SSIT) matheuristic is to try to have the

best of two worlds. Namely, SSIT makes use of state-of-the-art optimization software (such as CPLEX or Gurobi)

combined with loosening tolerances to obtain solutions that are guaranteed within known and relatively tight

tolerances of the optimum in a timely manner. By using commercially available and state-of-the-art optimization

software instead of highly complex specialized codes for the particular combinatorial optimization problem (COP)

being solved, SSIT can be used in a straightforward manner by both OR practitioners as well as researchers with no

problem-specific coding required. The SSIT matheuristic is very flexible and robust because the user can specify

the number of tolerances as well as their specific values based on their needs. The maximum execution time for

each tolerance is also specified based on the specific needs of the user. Although the SSIT concept is very intuitive,

this is the first article to discuss and quantify the benefits of using SSIT specifically to solve SKCPs.

As indicated earlier, SSIT can be considered a multi-pass methodology in which the program terminates if the

goal tolerance is met. If it is not met, then the tolerance is ―loosened‖ and the current best solution is used as input for

the next step in the solution process. The ―loosened‖ tolerance allows the branch-and-bound tree in the commercial

software to be pruned more quickly. The worst-case scenario for SSIT is that it does not terminate until the sum of

the maximum execution times for each tolerance is reached. In this case, the software gap at termination will

indicate how close the best SSIT solution is to the optimum. Specifically, for a minimization COP, the optimization

software provides the gap between the best lower bound and the best solution.

The pseudo code below summarizes the SSIT methodology for a generic COP.

3.1. SSIT Matheuristic

1. Begin

2. Input the number of phases N

3. Input tolerance T_i and maximum execution time t_i for phases i=1, ..., N

4. Input COP details

5. Run integer programming software program to solve COP

6. For 1<=i<=N-1,

7. IF integer programming software running time in phase i is less than t_i or i=N, FINISH

8. ELSE,

9. Take best solution obtained from Phase i and save it as SOL_i.

10. Run integer programming software program with SOL_i as the warm start and tolerance T_{i+1} and

maximum execution time t_{i+1}.

11. i=i+1

12. LOOP through step 7-11 until FINISH.

The flow chart of SSIT is also provided in Figure 1.

The benefit of SSIT using general purpose integer programming software such as CPLEX or Gurobi and, at

the same time, requiring no problem-specific coding is significant. For the problems discussed in this article, all the

software default settings were kept except the time and tolerance per SSIT pass. In particular, the OR practitioner

or researcher does not need to develop code or test a problem-specific algorithm. Furthermore, practitioners will

find that there is a wealth of examples that come with most optimization software (definitely CPLEX and Gurobi),

which are ready to run out of the box.

Review of Computer Engineering Research, 2021, 8(2): 76-95

80

© 2021 Conscientia Beam. All Rights Reserved.

 Figure-1. SSIT flowchart.

These templates often only require a few adjustments before they are ready to run domain specific

combinatorial optimization problems. Practitioners can also quickly find answers to many software specific

questions in the online forums and extensive manuals. Additionally, for industrial systems that use SSIT, the

performance of these systems is ―automatically‖ improved when new versions of the optimization software are

installed.

It is important to note that there is no need to ―optimize‖ either the number of tolerances used or their values

as well as the execution times for each tolerance. These values are both user and problem specific and can be easily

adjusted to meet the users’ needs!

Although it is common for OR practitioners to use commercial software at the default tolerance for a fixed

amount of time and use the best solution generated when the execution time ―runs out‖, SSIT provides an alternate

to this approach that will be shown to provide bounded solutions quickly.

4. SKCP EMPIRICAL RESULTS

4.1. Problem Instances

In Beasley’s OR library there are set covering problems that are used by researchers to test algorithms

developed to solve the set covering problem (SCP). Sixty-five SCP instances are commonly used to solve weighted

set covering problems (WSCP) in which the objective function coefficients are positive integers. Specifically, data

sets 4, 5, 6, A, B, C, D, E, F, G, and H are commonly used by researchers. These problem instances are summarized

in Table 1 below. In contrast, if the cost coefficients are all the same or typically all equal to one, then the problem

Review of Computer Engineering Research, 2021, 8(2): 76-95

81

© 2021 Conscientia Beam. All Rights Reserved.

is called a minimum cardinality set covering problem (MCSCP) or a uni-cost set covering problem. This current

research will focus on solving weighted SKCP and SVKCP instances.

Table-1. WSCP Instances from Beasley’s or Library.

Data Set Rows Columns Density Instances

SCP4 200 1000 2 10
SCP5 200 2000 2 10
SCP6 200 1000 5 5
SCPA 300 3000 2 5
SCPB 300 3000 5 5
SCPC 400 4000 2 5
SCPD 400 4000 5 5
SCPE 50 500 20 5

SCPNRE 500 5000 10 5
SCPNRF 500 5000 20 5
SCPNRG 1000 10,000 2 5
SCPNRH 1000 10,000 5 5

In the literature, it is common for researchers to use the following 135 SKCP instances based on Beasley’s SCP

instances. Specifically, researchers use the 45 problem instances in data sets 4, 5, 6, A, B, C, and D with three

different K values. How the K values are determined will now be given. KMIN = 2 for all 45 problem instances.

KMAX has the same K value for all rows of a problem, but can differ for the 45 problem instances. For a given

problem instance (from data sets 4, 5, 6, A, B, C, and D), the KMAX value is equal to the sum of the ones in a row

with the minimum number of ones. KMED is equal to the ceiling of (KMIN + KMAX)/2. Hence, researchers

typically report algorithm results by K value, KMIN, KMED, and KMAX.

4.2. SSIT Results for the SKCP

In order to use the SSIT matheuristic to solve SKCPs, a sequence of increasing tolerances and corresponding

maximum execution times must be specified and an integer programming software package must be selected. The

purpose of this article is to demonstrate that the SSIT matheuristic works with any integer programming software

package. Obviously, the better the selected optimization software is in terms of generating good solutions quickly,

the better the solution generated by SSIT.

The authors considered two leading optimization software packages: CPLEX (12.9) and Gurobi (9.1). Both of

these are highly sophisticated general purpose optimization packages that are easy for practitioners and researchers

to use to solve large-scale integer programming problems in particular. Empirical testing on more than 50

combinatorial optimization problems using both CPLEX and Gurobi resulted in no statistical difference in either

solution quality or execution time required given the same parameter settings for both software packages. Hence,

the authors decided to use both: Gurobi for the empirical analysis of the SKCPs and CPLEX for the empirical

analysis of the new SVKCPs (discussed in Section 5). Also, to demonstrate that SSIT is not PC dependent, two

different PCs were used—one for the SKCP analyses and a different one for the SVKCP analyses. The SKCPs will

be analyzed using Gurobi on a computer with the following specifications: an AMD Ryzen 7 3700X 8-Core

Processor and 16 GB RAM on Windows 10 Home 64-bit. The number of threads is 8. The SVKCPs will be

analyzed using CPLEX on a computer with the following specifications: 16 GB RAM on Windows 10, Intel

processor with 2.9 GHz, and 1000 GB hard drive. By default, CPLEX uses a number of threads equal to the

number of cores or 32 threads (whichever number is smaller). The operating system manages any contention for

processors. The PC used has 4 cores, so the number of threads is 4. A thorough discussion of the performance of

the latest versions of CPLEX versus Gurobi for solving combinatorial optimization problems is a topic for another

Review of Computer Engineering Research, 2021, 8(2): 76-95

82

© 2021 Conscientia Beam. All Rights Reserved.

article. In this article the power and robustness of SSIT regardless of the integer programming software used or

the PC used is demonstrated.

For the SSIT analysis of the SKCP, three SSIT scenarios (SSIT1, SSIT2, and SSIT3) were used. Limited

preliminary empirical analysis using the PC specified above for SKCPs indicated that tight bounds (less than 1%)

could be achieved in under 600 seconds for even the most difficult problems tested. Hence for this application, the

total execution times would add to 600 seconds. Three SSIT scenarios will demonstrate how shifting more

execution time to the looser tolerances will for these 135 SKCPs reduces the average execution time. The specifics

of these three SSIT scenarios are given in Table 2.

Table-2. SSIT scenario execution times (seconds) for each tolerance.

Tolerances

0.0001 0.001 0.003 0.005 0.007 0.009

SSIT1 60 60 120 120 120 120
SSIT2 60 60 60 120 120 180
SSIT3 30 60 90 120 120 180

The results of executing the three SSIT scenarios for the 135 SKCPs are summarized in Table 3, 4, and 5.

Detailed results for all 135 SKCPs are available upon request.

Table-3. Summary results averaged over 135 SKCPs.

SSIT
scenario

Average guaranteed maximum
deviation from optimum (%)

Average actual deviation
from optimum (%)

Average execution
time (seconds)

SSIT1 0.136 0.032 84

SSIT2 0.137 0.032 75
SSIT3 0.131 0.030 67

In Table 3, results for each of the three SSIT scenarios (SSIT1, SSIT2, and SSIT3) are averaged over all 135

SKCPs. The guaranteed maximum deviation from the optimum column shows the farthest away the SSIT solutions

can be without knowing the exact value of the optimums. Over all 135 SKCPs, the average guaranteed farthest

deviations the SSIT solutions are from the optimums are 0.136%, 0.137%, and 0.131% for SSIT1, SSIT2, and SSIT3

respectively. However, comparing these 135 SSIT solutions to known optimums or best-known solutions, the SSIT

solutions, on average, actually only deviated 0.032%, 0.032%, and 0.030% from the optimums for SSIT1, SSIT2, and

SSIT3 respectively.

Additionally, these very impressive results required, on average, only 84 seconds, 75 seconds, and 67 seconds

for SSIT1, SSIT2, and SSIT3 respectively. For SSIT3, the execution times were 180 seconds or less for 120 of the

135 SKCPs (89%) and 120 seconds or less for 113 of the 135 SKCPs (84%). There is next to no differences among

the three SSIT scenarios in terms guaranteed maximum deviation from the optimum and actual deviation from the

optimum. However, the SSIT3 scenario has the smallest average execution time of 67 seconds which is a 20%

reduction over the SSIT1 average execution time and an 11% reduction over the SSIT2 average execution time.

Table 4 shows average execution time and deviations for each SSIT scenario by KMIN, KMED, and KMAX.

The results in Table 4 indicate that, regardless of the SSIT scenario, the KMED SKCPs require the most effort to

solve and the KMIN SKCPs require the least effort to solve. However, regardless of SSIT scenario, even for the

KMED problems, the average times are less than 180 seconds. Except for time, the results differ very little by

SSIT scenario.

Table 5 shows the distribution of the tolerances at which SSIT terminated based on SSIT scenario and K value.

As was evident from earlier analyses, the results differ very little based on the particular SSIT scenario. For

Review of Computer Engineering Research, 2021, 8(2): 76-95

83

© 2021 Conscientia Beam. All Rights Reserved.

example, regardless of SSIT scenario, all 45 KMIN SKCPs terminated at the tightest tolerance of 0.0001. As

previously observed, again regardless of SSIT scenario, the KMED problems required the most effort to solve.

Table-4. Average execution time and deviations for each SSIT scenario by KMIN, KMED, and KMAX.

Average guaranteed maximum
deviation from optimum (%)

Average actual deviation
from optimum (%)

Average execution
time (seconds)

KMIN

SSIT1 0 0 0.5
SSIT2 0 0 0.5
SSIT3 0 0 0.5
KMED
SSIT1 0.296 0.071 178.6
SSIT2 0.298 0.070 151.4
SSIT3 0.295 0.065 145.0
KMAX
SSIT1 0.111 0.025 73.0
SSIT2 0.113 0.027 71.9
SSIT3 0.114 0.023 54.4

The robustness of SSIT is that knowing the difficulty of the KMED instances (for example, from preliminary

empirical analysis), if the OR practitioner wanted tighter guaranteed bounds for these problems and more computer

time was not an issue, more time could be spent at the tighter tolerances. Exactly how much time at each tolerance

would depend on the particular application. However, regardless of the SSIT scenario, the KMED SKCPs had a

guaranteed maximum deviation from the optimum of under 0.3% (actual deviation of 0.07%) and average execution

times under 180 seconds.

Table-5. Termination tolerances distributions for each SSIT scenario by KMIN, KMED, and KMAX.

 Tolerances

 0.0001 0.001 0.003 0.005 0.007 0.009

KMIN
SSIT1 45
SSIT2 45
SSIT3 45
KMED
SSIT1 19 2 6 3 10 5
SSIT2 19 2 4 5 11 4
SSIT3 19 1 6 4 11 4

KMAX
SSIT1 20 2 23
SSIT2 20 3 20 2
SSIT3 16 7 21 1

Note: Comparisons of our SSIT results with the best published algorithms specialized specifically to solve the SKCP will now be given.

4.3. SKCP SSIT Results Compared to Other Metaheuristics

Although, as operations research practitioners, the authors appreciate the guaranteed bounds that the SSIT

matheuristic provides, there may be readers that are interested in seeing how the SSIT solutions compared to the

five best performing metaheuristics for the SKCP reviewed earlier in this article. In Table 6, 7, and 8, the SSIT

results for the 135 SKCPS typically used for empirical experiments by researchers will be compared to Wang, et al.

[8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al. [5] discussed earlier in this article.

Review of Computer Engineering Research, 2021, 8(2): 76-95

84

© 2021 Conscientia Beam. All Rights Reserved.

Table-6A. Comparison of SSIT with Other Metaheuristics.

PROBLEM KMIN OPT/BKS ALSHIHIBA PESSOA SALEH WANG
2017

WANG
2019

SSIT1 SSIT2 SSIT3

SCP41 2 1148 1150 1150 1150 1148 1148 1148 1148 1148
SCP 42 2 1205 1205 1205 1205 1205 1205 1205 1205 1205
SCP 43 2 1213 1213 1214 1214 1213 1213 1213 1213 1213
SCP 44 2 1185 1189 1185 1185 1185 1185 1185 1185 1185
SCP 45 2 1266 1266 1266 1266 1266 1266 1266 1266 1266
SCP 46 2 1349 1349 1349 1352 1349 1349 1349 1349 1349
SCP 47 2 1115 1115 1115 1115 1115 1115 1115 1115 1115

SCP 48 2 1225 1225 1225 1225 1225 1225 1225 1225 1225
SCP 49 2 1485 1485 1485 1485 1485 1485 1485 1485 1485
SCP 410 2 1356 1360 1356 1359 1356 1356 1356 1356 1356
SCP 51 2 579 580 579 579 579 579 579 579 579
SCP 52 2 677 677 679 677 677 677 677 677 677
SCP 53 2 574 576 574 575 574 574 574 574 574
SCP 54 2 582 584 587 585 582 582 582 582 582
SCP 55 2 550 550 550 550 550 550 550 550 550
SCP 56 2 560 560 560 561 560 560 560 560 560
SCP 57 2 695 695 695 695 695 695 695 695 695

SCP 58 2 662 664 662 664 662 662 662 662 662
SCP 59 2 687 687 687 687 687 687 687 687 687
SCP 510 2 672 672 672 672 672 672 672 672 672
SCP 61 2 283 283 283 283 283 283 283 283 283
SCP 62 2 302 302 302 302 302 302 302 302 302
SCP 63 2 313 313 313 313 313 313 313 313 313
SCP 64 2 292 292 292 294 292 292 292 292 292
SCP 65 2 353 353 353 353 353 353 353 353 353

Review of Computer Engineering Research, 2021, 8(2): 76-95

85

© 2021 Conscientia Beam. All Rights Reserved.

Table-6B. Comparison Of SSIT With Other Metaheuristics Results For Kmin Skcp Data Sets A, B, C, and D.

PROBLEM KMIN OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 2017 WANG
2019

SSIT1 SSIT2 SSIT3

SCPA1 2 562 562 563 563 562 562 562 562 562
SCPA2 2 560 564 560 560 560 560 560 560 560
SCPA3 2 524 526 524 524 524 524 524 524 524
SCPA4 2 527 527 527 527 527 527 527 527 527
SCPA5 2 557 558 559 558 557 557 557 557 557
SCPB1 2 149 150 149 149 149 149 149 149 149
SCPB2 2 150 150 151 150 150 150 150 150 150

SCPB3 2 165 165 165 165 165 165 165 165 165
SCPB4 2 157 157 157 157 157 157 157 157 157
SCPB5 2 151 152 152 151 151 151 151 151 151
SCPC1 2 514 516 515 515 514 514 514 514 514
SCPC2 2 483 490 486 483 483 483 483 483 483
SCPC3 2 544 546 544 545 544 544 544 544 544
SCPC4 2 484 485 485 484 484 484 484 484 484
SCPC5 2 488 488 490 489 488 488 488 488 488
SCPD1 2 122 123 122 122 122 122 122 122 122
SCPD2 2 127 127 127 127 127 127 127 127 127

SCPD3 2 138 138 138 138 138 138 138 138 138
SCPD4 2 122 123 123 122 122 122 122 122 122
SCPD5 2 130 131 130 130 130 130 130 130 130

Review of Computer Engineering Research, 2021, 8(2): 76-95

86

© 2021 Conscientia Beam. All Rights Reserved.

Table-7A. Comparison Of SSIT With Other Metaheuristics Results For Kmed Skcp Data Sets 4, 5, and 6.

PROBLEM KMED OPT/BKS AL-SHIHIBA PESSOA SALEH WANG
2017

WANG
2019

SSIT1 SSIT2 SSIT3

SCP41 7 8350 8373 8366 8363 8352 8352 8350 8350 8350
SCP 42 6 6111 6123 6117 6118 6111 6111 6111 6111 6111
SCP 43 5 4676 4681 4690 4681 4676 4676 4676 4676 4676
SCP 44 5 4670 4683 4679 4674 4670 4670 4670 4670 4670
SCP 45 7 8389 8400 8409 8398 8392 8389 8389 8389 8389
SCP 46 6 6416 6427 6432 6419 6416 6416 6416 6416 6416
SCP 47 6 6281 6282 6284 6282 6281 6281 6281 6281 6281

SCP 48 7 8421 8435 8439 8427 8427 8424 8421 8421 8421
SCP 49 6 7101 7127 7121 7106 7101 7101 7101 7101 7101
SCP 410 5 5355 5367 5364 5358 5355 5355 5355 5355 5355
SCP 51 13 11205 11226 11239 11213 11209 11206 11205 11205 11205
SCP 52 14 14418 14443 14473 14436 14428 14424 14418 14418 14418
SCP 53 13 11476 11532 11513 11488 11487 11476 11476 11476 11476
SCP 54 12 9944 9970 9965 9956 9950 9948 9944 9944 9944
SCP 55 12 10880 10888 10918 10898 10895 10881 10880 10880 10880
SCP 56 12 10581 10609 10629 10597 10591 10582 10581 10581 10581
SCP 57 14 14919 14940 14984 14934 14946 14924 14919 14919 14923

SCP 58 12 10622 10539 10687 10635 10623 10622 10622 10622 10622
SCP 59 12 11042 11071 11081 11053 11049 11047 11042 11042 11042
SCP 510 13 12436 12469 12475 12451 12450 12436 12436 12436 12436
SCP 61 17 7653 7679 7692 7669 7653 7653 7653 7653 7653
SCP 62 16 6739 6760 6773 6752 6739 6739 6747 6747 6746
SCP 63 18 8309 8350 8365 8317 8309 8309 8309 8309 8309
SCP 64 18 8546 8569 8585 8567 8546 8546 8546 8546 8546
SCP 65 18 9038 9068 9070 9060 9038 9038 9038 9038 9038

Review of Computer Engineering Research, 2021, 8(2): 76-95

87

© 2021 Conscientia Beam. All Rights Reserved.

Table-7B. Comparison Of SSIT With Other Metaheuristics Results For Kmed Skcp Data Sets A, B, C, and D

PROBLEM KMED OPT/BKS AL-SHIHIBA PESSOA SALEH WANG
2017

WANG
2019

SSIT1 SSIT2 SSIT3

SCPA1 21 21224 21297 21324 21281 21241 21224 21236 21236 21241
SCPA2 21 21739 21810 21820 21793 21750 21740 21749 21753 21744
SCPA3 21 20095 20165 20155 20148 20126 20097 20113 20115 20102
SCPA4 22 22865 22959 22985 22916 22880 22880 22875 22866 22864
SCPA5 20 18643 18709 18706 18694 18660 18648 18641 18641 18646
SCPB1 61 29145 29214 29234 29218 29184 29145 29201 29211 29188
SCPB2 60 28075 28175 28187 28196 28124 28075 28135 28128 28109

SCPB3 59 27825 27934 27944 27899 27852 27825 27891 27878 27878
SCPB4 58 25664 25764 25742 25773 25695 25664 25707 25694 25703
SCPB5 60 28188 28295 28297 28310 28262 28188 28239 28247 28245
SCPC1 30 32613 32730 32763 32761 32648 32613 32646 32676 32639
SCPC2 31 32705 32837 32871 32848 32745 32705 32749 32776 32777
SCPC3 31 34428 34553 34610 34542 34451 34428 34496 34487 34477
SCPC4 30 31329 31466 31495 31472 31372 31329 31397 31364 31374
SCPC5 29 30030 30116 30196 30177 30061 30030 30082 30077 30087
SCPD1 82 38935 39091 39132 39073 38991 38935 39012 39022 39022
SCPD2 83 38935 39090 39098 39116 39038 38935 39035 39035 39037

SCPD3 81 39134 39256 39271 39314 39221 39134 39209 39209 39209
SCPD4 82 38723 38835 38879 38894 38814 38723 38798 38794 38814
SCPD5 83 40268 40401 40409 40404 40362 40268 40338 40342 40332

Review of Computer Engineering Research, 2021, 8(2): 76-95

88

© 2021 Conscientia Beam. All Rights Reserved.

Table-8A. Comparison Of SSIT With Other Metaheuristics Results For Kmax Skcp Data Sets 4, 5, and 6.

PROBLEM KMAX OPT/BKS AL-SHIHIBA PESSOA SALEH WANG
2017

WANG
2019

SSIT1 SSIT2 SSIT3

SCP41 11 18265 18265 18290 18273 18265 18265 18265 18265 18265
SCP 42 9 12360 12378 12405 12369 12370 12360 12360 12360 12360
SCP 43 8 10396 10397 10398 10396 10403 10396 10396 10396 10396
SCP 44 8 10393 10415 10427 10401 10396 10395 10393 10393 10393
SCP 45 11 18856 18861 18856 18863 18856 18856 18856 18856 18856
SCP 46 10 15394 15426 15419 15411 15404 15394 15394 15394 15394
SCP 47 10 15233 15261 15280 15249 15236 15233 15233 15233 15233

SCP 48 11 18602 18635 18628 18610 18613 18612 18602 18602 18602
SCP 49 10 16558 16586 16591 16563 16568 16562 16558 16558 16558
SCP 410 8 11607 11615 11618 11616 11607 11607 11607 11607 11607
SCP 51 24 35663 35722 35749 35679 35716 35685 35670 35670 35671
SCP 52 26 45396 45449 45433 45412 45428 45409 45396 45396 45396
SCP 53 24 36329 36374 36388 36349 36368 36343 36329 36329 36329
SCP 54 21 28017 28044 28051 28037 28035 28026 28017 28017 28017
SCP 55 22 32779 32808 32878 32795 32802 32788 32779 32779 32779
SCP 56 21 29608 29656 29653 29632 29632 29618 29608 29608 29608
SCP 57 25 41930 41964 41954 41944 41956 41946 41930 41930 41930

SCP 58 22 32320 32358 32405 32344 32344 32332 32320 32320 32320
SCP 59 22 33584 33600 33655 33602 33608 33599 33584 33584 33584
SCP 510 24 38709 38779 38807 38737 38756 38730 38709 38709 38709
SCP 61 31 23510 23559 23534 23536 23510 23510 23525 23523 23510
SCP 62 29 19934 19980 20025 19964 19940 19934 19952 19953 19956
SCP 63 34 27983 28021 28027 28014 27983 27983 27983 27983 27994
SCP 64 33 26442 26477 26530 26475 26446 26446 26456 26449 26450
SCP 65 33 27069 27090 27124 27084 27069 27069 27071 27071 27071

Review of Computer Engineering Research, 2021, 8(2): 76-95

89

© 2021 Conscientia Beam. All Rights Reserved.

Table-8B. Comparison Of SSIT With Other Metaheuristics Results For Kmax Skcp Data Sets A, B, C, and D.

PROBLEM KMAX OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 2017 WANG 2019 SSIT1 SSIT2 SSIT3

SCPA1 40 68507 68620 68669 68579 68590 68528 68518 68518 68518
SCPA2 39 65842 65940 65922 65881 65927 65863 65861 65861 65860
SCPA3 40 66829 66978 67016 66879 66891 66864 66839 66860 66863
SCPA4 41 72334 72436 72465 72398 72398 72351 72342 72338 72342
SCPA5 38 60491 60609 60625 60553 60539 60498 60503 60503 60503
SCPB1 119 105491 105580 105636 105522 105560 105491 105532 105532 105532
SCPB2 118 102883 102988 103046 103007 102941 102883 102937 102937 102912
SCPB3 115 98255 98334 98445 98400 98347 98255 98311 98311 98311
SCPB4 114 93729 93797 93836 93807 93800 93729 93783 93783 93760
SCPB5 118 102761 102878 102905 102822 102867 102761 102829 102832 102832
SCPC1 58 112471 112595 112667 112557 112565 112476 112538 112524 112501
SCPC2 59 113916 114017 114145 113974 114012 113925 113950 113950 113948
SCPC3 59 117416 117505 117680 117544 117501 117446 117454 117454 117449
SCPC4 58 110823 110945 111091 110935 110938 110851 110869 110869 110894
SCPC5 56 104428 104509 104591 104506 104518 104428 104457 104488 104427
SCPD1 162 144815 144891 145060 145055 144961 144815 144891 144935 144941
SCPD2 163 144020 144165 144218 144177 144138 144020 144182 144172 144141
SCPD3 159 140450 140542 140685 140655 140589 140450 140530 140609 140533

SCPD4 162 143391 143470 143582 143544 143488 143391 143504 143504 143497
SCPD5 163 146249 146308 146452 146373 146342 146249 146294 146294 146294

Review of Computer Engineering Research, 2021, 8(2): 76-95

90

© 2021 Conscientia Beam. All Rights Reserved.

To try to determine how good heuristic solutions are, Pessoa, et al. [5] ran each of the 135 problem instances

for up to 24 hours using CPLEX (Version 11). Pessoa, et al. [5] found proven optimal solutions for all 45 KMIN

instances, for 25 KMED instances, and for 25 KMAX instances. Researchers typically compare their results to

these CPLEX results. The best-known solutions of Pessoa, et al. [5] were updated based on better solutions

obtained by Wang, et al. [9] (in blue in the tables). Best known solutions were also updated based on SSIT results

(in red in the tables).

Table 6, 7, and 8 compare the results of using SSIT1, SSIT2, and SSIT3 as described previously in this article

with the best results (over 10 independent runs) reported in Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-

Shihabi [6] and Pessoa, et al. [5] to solve the 45 SKCPs at KMIN, KMED, and KMAX respectively.

To make a simple comparison among the five previously published best performing SKCPs and the three SSIT

scenario results for the 135 test instances, the average deviation from the optimum or best-known solution for each

of the five solution methods are calculated over all 135 test instances. The average deviations from the

optimum/BKS objective function value over all 135 problems for Al-Shihabi [6] was 0.20%, for Pessoa, et al. [5]

was 0.23%, for Salehipour [7] was 0.13%, for Wang, et al. [8] was 0.05%, and for Wang, et al. [9] was 0.01%. All

three SSIT scenarios had the same (to two decimal places) average deviation from the optimum/BKS objective

function value over all 135 problems of 0.03%. All of these solution procedures generated very good results for the

135 test SKCP instances, with SSIT giving the second-best results at only an average 0.03% deviation from the

optimums. Detailed statistical analyses of these eight solution methods will be provided in Section 4.4. All three

SSIT scenarios provide excellent bounds (guaranteed to be on average within a tolerance of 0.136%, 0.137%, and

0.131% of the optimums) for these 135 SKCPs with respectable average execution time of 84, 75, and 67 seconds for

SSIT1, SSIT2, and SSIT3 respectively.

Let’s look a little closer at the major advantage that SSIT has over the other approximate solutions methods

specifically when solving the SKCP. It was just shown that Wang, et al. [9] on average only deviated 0.01% from

the optimums for these 135 SKCPs. In contrast, the three SSIT scenarios all performed ―poorly‖ with an average

deviation of 0.03% from the optimum for each SSIT scenario. The real strength of SSIT, in the opinion of the

authors of this article, is the fact that without expending excessive computer time to determine optimums, the SSIT

scenario results are on average absolutely guaranteed to be within 0.136%, 0.137%, and 0.131% of the optimums for

SSIT1, SSIT2, and SSIT3 respectively. Additionally, SSIT obtains these excellent results using general purpose

commercial software with default parameter settings—no specialized algorithms or computer codes are needed.

Furthermore, as pointed out earlier, leading integer programming software packages such as CPLEX and Gurobi

offer a large number of pre-defined problem templates and customer support.

Finally, suppose that an OR practitioner was faced with the need to solve a SKCP for an actual real-world

application and had access to CPLEX or Gurobi. The OR practitioner could code the MLQCC algorithm of Wang,

et al. [9] and solve his/her problem using MLQCC and obtain a solution that was probably very good, but exactly

how good would be totally unknown. Alternately, The OR practitioner could easily use SSIT in conjunction with

CPLEX or Gurobi. If the decision would have major financial implications for his/her corporation and the SKCP

was very large, the OR practitioner might very well be willing to invest several hours of computing time to

generate a solution that had a reasonably tight bound on it. If the reader was the OR practitioner, would the reader

use the Wang, et al. [9]; Salehipour [7] MLQCC algorithm or the SSIT methodology?

4.4. Statistical Analyses

In this section, with the 135 SKCP instances (45 KMIN instances, 45 KMED instances, and 45 KMAX

instances), the three SSIT scenarios (SSIT1, SSIT2, and SSIT3) suggested in this article are compared to the top

five SKCP solution methods Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al.

[5] in the literature. Tukey’s pairwise comparison (after significant differences among the eight methods are

Review of Computer Engineering Research, 2021, 8(2): 76-95

91

© 2021 Conscientia Beam. All Rights Reserved.

detected from the one-way repeated measures ANOVA) is used for the three K values (KMIN, KMED, and KMAX).

Tukey [13] the common significant level at 5% is applied in the analyses.

In the tables of the following sub-sections, Wang, et al. [8]; Wang, et al. [9], Saleh, Al-Shihiba, and Pessoa

indicate Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al. [5] respectively.

Table 9, 10, and 11 summarize the pairwise comparisons among the eight methods in terms of percent deviation

from the optimum for KMIN, KMED, and KMAX, respectively. Note that the percent deviation from the optimum

is getting smaller in order of A, B, C, and D, and methods that do not share a letter are significantly different.

4.4.1. Comparison – KMIN

Readers can check many results from Table 9 including (1) there is no statistically significant difference

between Al_Shihiba and Pessoa and (2) there is no statistically significant difference among Saleh, Wang, et al. [8];

Wang, et al. [9], and the three SSIT scenarios (SSIT1, SSIT2, and SSIT3).

Table-9. Summary – Three SSIT scenarios vs. Top five methods. with KMIN.

Grouping Information Using the Tukey Method and 95% Confidence.

Method N Mean Grouping

Al_Shihiba 45 0.0020897 A

Pessoa 45 0.0012286 A B

Saleh 45 0.0007770 B C

SSIT2 45 0.0000000 C

WANG 2019 45 0.0000000 C

WANG 2017 45 0.0000000 C

SSIT3 45 0.0000000 C

SSIT1 45 0.0000000 C

 Note: Means that do not share a letter are significantly different.

4.4.2. Comparison – KMED

In Table 10, readers can check many results such as (1) Pessoa shows the worst performance, (2) there is no

statistically significant difference among Wang, et al. [8] SSIT1, SSIT2, and SSIT3 and (3) Wang, et al. [9] shows

the best performance but the difference between SSIT3 and Wang, et al. [9] is not statistically significant.

Table-10. Summary – Three SSIT scenarios vs. Top five methods with KMED.

Grouping Information Using the Tukey Method and 95% Confidence.

Method N Mean Grouping

Pessoa 45 0.0037011 A

Al_Shihiba 45 0.0026969 B

Saleh 45 0.0022919 B

WANG 2017 45 0.0008584 C

SSIT1 45 0.0007062 C

SSIT2 45 0.0007020 C

SSIT3 45 0.0006546 C D

WANG 2019 45 0.0000800 D

 Note: Means that do not share a letter are significantly different.

4.4.3. Comparison – KMAX

Readers can check many results from Table 11 including (1) there is no statistically significant difference

between Saleh and Wang, et al. [8] and (2) there is no statistically significant difference among the four best

performing methods - Wang, et al. [9] SSIT1, SSIT2, and SSIT3.

Review of Computer Engineering Research, 2021, 8(2): 76-95

92

© 2021 Conscientia Beam. All Rights Reserved.

Table-11. Summary – Three SSIT scenarios vs. Top five methods with KMAX.

Grouping Information Using the Tukey Method and 95% Confidence.

Method N Mean Grouping

Pessoa 45 0.0018616 A

Al_Shihiba 45 0.0011707 B

Saleh 45 0.0008030 C

WANG 2017 45 0.0006769 C

SSIT2 45 0.0002701 D

SSIT1 45 0.0002488 D

SSIT3 45 0.0002315 D

WANG 2019 45 0.0001604 D

 Note: Means that do not share a letter are significantly different.

In the next section, a test set of 65 SVKCP instances will be defined and solved using SSIT.

5. SVKCP EMPIRICAL RESULTS

5.1. SVKCP Data Sets

 Since the SKCP instances commonly used in the literature to test SKCP solution approaches are based on

SCPs from Beasley’s OR-library, the SVKCPs defined now will also be based on these SCPs as well as the SKCPs

previously discussed. The 65 SCPs from Beasley’s data sets 4, 5, 6, A, B, C, D, E, F, G, and H will be used to create

SVKCPs.

Recall that, for a given SCP, KMAX is equal to the sum of the ones in a row with the minimum number of ones.

For each of the 65 SCPs mentioned above, the following 65 SVKCPs will be defined by randomly selecting integer

K values for each row of the problem from the integers in the interval [2, KMAX]. In other words, instead of a

fixed K value for all the rows of the problem (as is the case for SKCPs), the K values vary by row, but are integers

randomly taken from the integers in the interval [2, KMAX]. For example, for SCP41, the interval would be from

2 to 11, so each row in the corresponding full interval SVKCP would have a K value of either 2, 3, 4, …,10, or 11.

The actual K values used for each row for the 65 SVKCPs, are available on the cloud at SVKCP_K-values.xlsx.

5.2. SSIT for the SVKCP

To demonstrate that SSIT performs well on other PCs, software, and scenarios, the 65 SVKCPs just defined

were solved using CPLEX on a PC with specifications: 16 GB RAM on Windows 10, Intel processor with 2.9 GHz,

and 1000 GB hard drive. By default, CPLEX uses a number of threads equal to the number of cores or

32 threads (whichever number is smaller). The operating system manages any contention for processors. The PC

used has 4 cores, so the number of threads is 4. For these SVKCPs, only one SSIT scenario is used. Specifically, the

SSIT scenario used for the 65 SVKCPs was 0.001 at 300 seconds, 0.003 at 60 seconds, and 0.005 for 60 seconds.

This scenario contrasts with the SSIT scenarios used for the 135 SKCPs because for this scenario most of the time

is spent at the tightest tolerance. The SSIT solution details for these SVKCPs are provided in Table 12.

From Table 12, one can see that all SSIT solutions for the 65 SVKCPs are guaranteed to be within 0.1% of the

optimum and only required an average of 12.2 seconds to solve each SVKCP and 120 out of the 130 SVKCPs (over

92%) required less than 2 seconds of solution time. To demonstrate the power of the SSIT matheuristic, these 65

SVKCPs were solved in CPLEX with a tolerance of T= 0.0001 (the default) and up to one hour of execution time.

Of these 65 SVKCPs, 47 terminated within the one-hour time limit and hence had found solutions guaranteed to be

within 0.01% of the optimum—optimum for all intent purposes. However, 18 had not terminated after 3600

seconds of execution time.

https://nam02.safelinks.protection.outlook.com/ap/x-59584e83/?url=https%3A%2F%2Flivekutztown-my.sharepoint.com%2F%3Ax%3A%2Fg%2Fpersonal%2Fbmcna842_live_kutztown_edu%2FETcbUUvCuxpNkc-ODQrgHxEBJpWAysL5O_92LfBqT2qtIA%3Fe%3DpO2MzW&data=02%7C01%7Cvasko%40kutztown.edu%7C64253d9a98094dc4186208d84455afd2%7C03c754af89a74b0abd4bdb68146c5fa4%7C1%7C0%7C637334482290100557&sdata=t2xxsEbyIG6eYsIZFSdFGocDx1R6nKnbzL3lEH9llgQ%3D&reserved=0

Review of Computer Engineering Research, 2021, 8(2): 76-95

93

© 2021 Conscientia Beam. All Rights Reserved.

Table-12. SSIT Results for 65 SVKCPs.

 T=0.001 T=0.001

Problem OBJ FN Time Problem OBJ FN Time

SVKCP41 11019 0.14 SVKCPB1 65005 0.13
SVKCP42 6773 0.08 SVKCPB2 62609 0.47
SVKCP43 5619 0.09 SVKCPB3 59285 0.22
SVKCP44 6408 0.17 SVKCPB4 59069 0.25
SVKCP45 9860 0.03 SVKCPB5 63159 0.27
SVKCP46 8094 0.08 SVKCPC1 62757 0.61
SVKCP47 8355 0.06 SVKCPC2 62543 0.20
SVKCP48 9829 0.13 SVKCPC3 66477 1.19
SVKCP49 9153 0.17 SVKCPC4 63568 0.83
SVKCP410 6926 0.16 SVKCPC5 57532 0.64
SVKCP51 19615 0.14 SVKCPD1 99270 0.95

SVKCP52 25113 0.16 SVKCPD2 96204 0.66
SVKCP53 16488 0.14 SVKCPD3 97091 0.94
SVKCP54 15731 0.13 SVKCPD4 96351 1.84
SVKCP55 16488 0.09 SVKCPD5 95537 0.42
SVKCP56 14720 0.11 SVKCPNRE1 175154 1.02
SVKCP57 22186 0.13 SVKCPNRE2 174079 1.14
SVKCP58 18163 0.20 SVKCPNRE3 166165 1.56
SVKCP59 16318 0.08 SVKCPNRE4 161895 1.41
SVKCP510 22296 0.05 SVKCPNRE5 162255 1.14
SVKCP61 13185 0.22 SVKCPNRF1 178893 1.70
SVKCP62 11868 0.41 SVKCPNRF2 189989 1.59
SVKCP63 15527 0.67 SVKCPNRF3 189785 1.83
SVKCP64 15040 0.27 SVKCPNRF4 188813 1.13
SVKCP65 15847 0.36 SVKCPNRF5 196674 1.61
SVKCPA1 39046 0.44 SVKCPNRG1 217562 227.14
SVKCPA2 36828 0.34 SVKCPNRG2 215316 2.61
SVKCPA3 37781 0.16 SVKCPNRG3 219089 52.31
SVKCPA4 41455 0.22 SVKCPNRG4 221559 184.17
SVKCPA5 34844 0.39 SVKCPNRG5 227274 281.81

 SVKCPNRH1 317145 3.00
 SVKCPNRH2 320148 3.64
 SVKCPNRH3 319924 3.53
 SVKCPNRH4 315907 3.33
 SVKCPNRH5 320799 3.50

Although all SSIT solutions for the 65 SVKCPs were guaranteed within 0.1% of the optimum, how did these

solutions compare to the solutions that were found when CPLEX was executed at the default T=0.0001 tolerance?

As a simple comparison, the average objective function value for the 65 SVKCPs executed at T=0.0001 was 94042.6

and the average execution time was 1054.9 seconds compared to the SSIT average objective function value of

94084.0 and an average execution time of 12.2 seconds. Hence, after the fact, the SSIT solutions were off from the

solutions obtained by CPLEX with T = 0.0001 by 0.04%, but the SSIT execution time was only 1.2% of the CPLEX

execution time. Note that, even ―before the fact‖, the SSIT solutions were guaranteed within 0.1% of the optimum.

6. SUMMARY AND FUTURE WORK

In this article the simple sequential increasing tolerance (SSIT) matheuristic is used to solve generalizations of

the classic set covering problem such that bounded solutions are efficiently generated. This multi-pass matheuristic

is used in conjunction with integer programming software (in this case both Gurobi and CPLEX) and employs a

sequence of increasing tolerances that are used with the integer programming software. Best solutions found at one

tolerance are then input as starting solutions for the next looser tolerance. In addition to SSIT finding bounded

solutions quickly, its use of general-purpose integer programming software (such as CPLEX or Gurobi) is a

Review of Computer Engineering Research, 2021, 8(2): 76-95

94

© 2021 Conscientia Beam. All Rights Reserved.

significant benefit to OR practitioners. Specifically, it allows OR practitioners to quickly develop SSIT models

using default software parameter values and templates with no need for problem-specific algorithms and

corresponding computer code. Based on the particular application, the user has the flexibility to set the number of

tolerances as well as their values. Additionally, the user determines the maximum execution time for each

tolerance. Furthermore, for industrial systems that use SSIT, the performance of these systems is ―automatically‖

improved when new versions of the optimization software are installed.

Specifically, the SSIT matheheurstic was shown to be highly effective and efficient at solving 135 set K-

covering problems (SKCP) that appear in the literature. Three SSIT scenarios were tested and average deviation

from the optimum or best-known solution was 0.03% for all three scenarios over all 135 SKCPs with average

execution times of 84, 75, and 67 seconds for SSIT1, SSIT2, and SSIT3 respectively. Only one of the five published

algorithms had a smaller average deviation and that was Wang, et al. [9] with an average deviation of 0.01%.

However, for the 135 problems, statistical analyses demonstrated that the difference between SSIT3 and Wang, et

al. [9] was statistically insignificant. Also, SSIT1 and SSIT2 results were statistically as good as Wang, et al. [9]

for the KMIN and KMAX problems. SSIT3 and Wang, et al. [9] were slightly better than SSIT1 and SSIT2 for

the KMED problems. What is much more important is that SSIT generated solutions that were guaranteed to be

within a small percentage of the optimum while there are no solution quality guarantees for any of the other SKCP

solution methods that appear in the literature. Specifically, over all 135 SKCPs, SSIT found solutions guaranteed to

be at most 0.136%, 0.137%, and 0.131% from the optimum for scenarios SSIT1, SSIT2, and SSIT3 respectively.

This article introduced the set variable K-covering problem to be a SKCP in which the K value varies by row

constraints. Based on set covering problems from Beasley’s OR-Library, 65 SVKCPs were defined and effectively

and efficiently solved using the SSIT matheuristic. For these 65 SVKCPs, SSIT found solutions guaranteed within

0.1% of the optimum for all 65 problems in an average time of 12 seconds.

Finally, since the SSIT matheuristic is a general-purpose strategy for solving combinatorial optimization

problems, the authors plan to test the performance of SSIT on solving other difficult-to-solve combinatorial

optimization problems using several different commercial integer programming software packages.

Funding: This study received no specific financial support.
Competing Interests: The authors declare that they have no competing interests.
Acknowledgement: All authors contributed equally to the conception and design of the
study.

REFERENCES

[1] M. G. Resende, "An optimizer in the telecommunications industry," SIAM SIAG/Optimization Views-and-News, vol. 18,

pp. 8-19, 2007.

[2] C.-J. Chang, Y.-T. Huang, and K.-M. Chao, "A greedier approach for finding tag SNPs," Bioinformatics, vol. 22, pp.

685-691, 2006.Available at: https://doi.org/10.1093/bioinformatics/btk035.

[3] G. Lin and J. Guan, "Solving maximum set k-covering problem by an adaptive binary particle swarm optimization

method," Knowledge-Based Systems, vol. 142, pp. 95-107, 2018.Available at:

https://doi.org/10.1016/j.knosys.2017.11.028.

[4] E. HAE, E.-L. YMA, and A. SM, "A new approximation algorithm for k-set cover problem," Arabian Journal for Science

and Engineering, vol. 41, pp. 935–940, 2016.Available at: https://doi.org/10.1007/s13369-015-1895-3.

[5] L. S. Pessoa, M. G. Resende, and C. C. Ribeiro, "A hybrid Lagrangean heuristic with GRASP and path-relinking for set

k-covering," Computers & Operations Research, vol. 40, pp. 3132-3146, 2013.Available at:

https://doi.org/10.1016/j.cor.2011.11.018.

[6] S. Al-Shihabi, "A hybrid of max–min ant system and linear programming for the k-covering problem," Computers &

Operations Research, vol. 76, pp. 1-11, 2016.Available at: https://doi.org/10.1016/j.cor.2016.06.006.

Review of Computer Engineering Research, 2021, 8(2): 76-95

95

© 2021 Conscientia Beam. All Rights Reserved.

[7] A. Salehipour, A heuristic algorithm for the set k-cover problem. Communications in Computer and Information Science 1173.

Cham: Springer, 2020.

[8] Y. Wang, M. Yin, D. Ouyang, and L. Zhang, "A novel local search algorithm with configuration checking and scoring

mechanism for the set k-covering problem," International Transactions in Operational Research, vol. 24, pp. 1463-1485,

2017.Available at: https://doi.org/10.1111/itor.12280.

[9] Y. Wang, C. Li, H. Sun, J. Chen, and M. Yin, "MLQCC: An improved local search algorithm for the set k-covering

problem," International Transactions in Operational Research, vol. 26, pp. 856-887, 2019.Available at:

https://doi.org/10.1111/itor.12614.

[10] B. McNally, "A simple sequential increasing tolerance matheuristic that generates bounded solutions for combinatorial

optimization problems," Master’s Thesis, Kutztown University of Pennsylvania, 2021.

[11] Y. Lu, B. McNally, E. Shively-Ertas, and F. Vasko, "A simple and efficient technique to generate bounded solutions for

the multidimensional Knapsacvk problem: A guide for OR practitioners," IOnternational Journal of Circuits, Systems, and

Signal Processing, vol. 15, pp. 1650-1656, 2021.Available at: https://doi.org/10.46300/9106.2021.15.178.

[12] A. Dellinger, Y. Lu, B. McNally, M. S. Song, and F. J. Vasko, "A simple and efficient technique to generate bounded

solutions for the generalized assignment problem: A guide for OR practitioners," Research Reports on Computer Science,

vol. 1, pp. 13-34, 2021.

[13] J. Tukey, "Comparing individual means in the analysis of variance," Biometrics, vol. 5, pp. 99-114, 1949.Available at:

https://doi.org/10.2307/3001913.

Views and opinions expressed in this article are the views and opinions of the author(s), Review of Computer Engineering Research shall not be responsible or
answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

