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Numerous portable technologies, including electric vehicles, cell phones, and laptops, 
are powered by batteries. The use of batteries is increasing due to the widespread usage 
of battery energy storage in the generation of renewable energy. This has also resulted 
in an increase in the number of negative incidents related to batteries and had a 
significant negative economic impact on industries. The shortcomings in the traditional 
monitoring of lithium-ion batteries have been overcome through the implementation of 
advanced technologies. However, few studies have discussed the use of distinct datasets 
in the implementation of an intelligent battery management system (BMS). This paper 
presents a discussion on the choice of dataset variables and applied algorithms for the 
implementation of effective BMS with artificial intelligence (AI) and machine learning 
(ML). The study analyzed the use of different datasets, including the National 
Aeronautics and Space Administration (NASA) battery dataset, to improve BMS. It 
found that the dataset variables must include the terminal voltage, terminal current, 
charge current, charge voltage, internal resistance, temperature, and cycle to calculate 
the state of health (SoH). In future, BMS hardware will be developed to obtain more 
precise results using AI and ML-based prediction models, utilizing the selected dataset 
characteristics and variables to achieve longer battery life. 
 

Contribution/Originality: This study investigates the helpfulness of the available battery datasets for training 

and testing machine learning models and identifies an improved model for predicting a battery’s state of health. 

 

1. INTRODUCTION 

Renewable utility-scale power generation and storage have become much more cost-effective and important in 

recent years. Energy storage systems are collections of functions or methods used to collect and store energy [1]. 

As the demand for energy increases, new energy storage technologies are developed. Storage types include 

electrochemical, mechanical, chemical, thermal storage, and more. Table 1 shows a comparative analysis of energy 

storage types with their storage time and efficiency [2]. 
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Table 1. Comparative analysis of energy storage types. 

 Storage type Storage time Efficiency Example 

1 Electrochemical storage Short High Battery technology 
2 Mechanical storage Long High Flywheels 
3 Thermal storage Long High Thermochemical energy 
4 Chemical storage Long Less H2 (hydrogen), CH4 (methane) 

 

 

Battery technology is the most commonly used form of energy storage as it converts electrochemical energy 

into electrical energy. Some examples of common battery cells are lithium-ion cells, alkaline cells, carbon-zinc cells, 

lead acid, zinc-air, and more. Nowadays, lithium-ion batteries dominate the market and research environment 

because they show better results in the areas of energy efficiency and energy density compared to other batteries. 

This is the reason for the wide utilization of these batteries in various hand-held devices and electric vehicles [3]. 

Figure 1 illustrates the various accidents that have occurred due to incorrect data in battery management or 

inefficient algorithms [4]. The occurrence of these accidents can be minimized by using different algorithms to 

predict them based on live data. However, predictions based on live data have limitations; they may take a long time and 

are costly. For this reason, available battery data sets can be used to save time and money. This study evaluated the use of 

battery datasets and their variables to improve battery management systems (BMS) [5]. Based on the literature, we 

develop and discuss the vital recommendations that can be applied in future research. 

 

 
Figure 1. Representation of Li battery fires and facilities affected. 

 

The main contributions of the study are as follows: 

• The concepts and types of energy storage are discussed, and a comparative analysis is conducted of the 

different types of datasets and algorithms based on publicly available battery datasets. 

• Based on the analysis, the article discusses the parameters and recommends parameters for future use. 

The structure of the paper is as follows. Section 2 discusses the methodology; Section 3 presents an overview of 

BMS; Section 4 discusses the importance of studying existing battery datasets; Section 5 discusses the available 

datasets and algorithms; Section 6 covers the analysis of the publicly available datasets and algorithms; Section 7 

presents recommendations; Section 8 concludes and suggests future directions. 

 

2. METHODOLOGY 

BMS is essential for optimizing the performance and lifespan of batteries in various applications. This study 

investigated the role of existing battery datasets and BMS algorithms to improve battery management efficiency. 

The methodology comprised five steps: 
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• Data collection: The study collected existing battery datasets from academic research papers, battery 

manufacturers, and open-source repositories. The datasets covered a wide range of battery chemistry and 

operating conditions relevant to BMS. The collected datasets were used to evaluate existing algorithms and 

variables and propose improvements to enhance BMS performance. 

• Data preprocessing: After collecting the datasets, the study preprocessed them by removing any missing 

values, outliers, and redundant data points. Normalizing the data ensures consistency across different 

datasets. The preprocessing step is critical to ensure the accuracy and reliability of the evaluation and 

analysis of existing algorithms. 

• Algorithm and dataset comparison: Based on the evaluation results, the study compared the performance of 

different algorithms and identified the factors that influence their performance, such as battery chemistry, 

operating conditions, and system design. The algorithm comparison step provides insight into the best 

algorithm for specific applications and identifies opportunities for improvement. 

• Improvement proposal: Finally, the study proposed required algorithms and variables based on the analysis 

of the dataset and algorithm performance. The proposed improvements aim to enhance the efficiency and 

reliability of BMS. Additionally, the study provides recommendations for the design of BMS to improve 

battery management efficiency. 

 

3. OVERVIEW OF BATTERY MANAGEMENT SYSTEMS 

A BMS is a system that is designed to manage and monitor the performance of rechargeable batteries. A BMS 

helps to ensure that the battery operates safely and efficiently while extending its life. BMS technology has become 

increasingly important as the demand for rechargeable batteries has grown. Today, BMS technology is used in a 

wide range of applications, including electric vehicles, renewable energy storage, portable devices, and more [6]. At 

its core, a BMS is designed to perform several key functions. These functions include monitoring the state of the 

battery, controlling the charging and discharging process, and protecting the battery from overcharging, 

overheating, and other potentially harmful conditions [7]. A typical BMS consists of several different components, 

including a microcontroller or processor, sensors, a battery charger, and other electronic components. These 

components work together to monitor and control the battery's performance. BMS technology has evolved rapidly 

in recent years, with new features and capabilities being added all the time. Some of the latest advances in BMS 

technology include wireless connectivity, advanced analytics, and the ability to integrate with other systems and 

devices [8]. 

Each of a BMS’ several different components plays a critical role in monitoring and controlling the 

performance of a rechargeable battery. The following are some of the most important components of a BMS, as 

illustrated in Figure 2 [9]: 

• Microcontroller or processor: The microcontroller or processor is the "brain" of the BMS. It controls the 

overall operation of the system, including monitoring the state of the battery, controlling the charging and 

discharging process, and communicating with other components. 

• Sensors: Sensors are used to monitor various parameters of the battery, such as voltage, temperature, and 

current. These sensors provide the data that the BMS needs to determine the state of the battery and make 

decisions about how to control the charging and discharging process. 

• Battery charger: The battery charger is responsible for charging the battery when it is low on charge. The 

BMS controls the charging process to ensure that the battery is charged safely and efficiently. 

• Protection circuits: Protection circuits are used to prevent the battery from becoming damaged due to 

overcharging, over-discharging, or other potentially harmful conditions. These circuits can shut down the 

charging process if a problem is detected, preventing further damage to the battery. 
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• Communication interfaces: Communication interfaces are used to communicate with other systems or 

devices, such as a vehicle's onboard computer or a renewable energy system. These interfaces allow the BMS 

to receive instructions or provide data about the battery's performance. 

• Balancing circuit: A balancing circuit is used to ensure that the charge is evenly distributed across the 

individual cells in a battery. This helps to prevent one cell from becoming overcharged or undercharged 

compared to the others, which can extend the life of the battery. 

• Safety features: A BMS may include various safety features such as overvoltage protection, overcurrent 

protection, and thermal protection to ensure that the battery operates safely and does not pose a risk of 

damage or injury. 

 

 
Figure 2. BMS components. 

 

There are several types of BMS, which are used to monitor and control the performance and health of batteries 

in various applications. Figure 3 illustrates some common types of BMS; these include [7]: 

• Passive BMS: A passive BMS is a simple system that uses passive components such as resistors and 

capacitors to balance the charge across the individual cells in a battery. Passive BMS systems are relatively 

inexpensive and easy to implement, but they may not be as effective as more advanced systems in balancing 

the charge. 

• Active BMS: An active BMS uses active components such as transistors and amplifiers to balance the charge 

across the individual cells in a battery. Active BMS systems are generally more effective than passive 

systems, but they may be more expensive and complex to implement. 

• Hybrid BMS: A hybrid BMS combines elements of both passive and active systems, using passive 

components for some functions and active components for others. Hybrid systems can offer a good balance of 

effectiveness and cost and are commonly used in many battery applications. 

• Distributed BMS: A distributed BMS is a system in which each cell in a battery has its own BMS. This 

allows for very precise monitoring and control of the battery's performance but can be expensive and 

complex to implement. 

• Centralized BMS: A centralized BMS is a system in which all of the cells in a battery are monitored and 

controlled by a single BMS. This can be a simpler and less expensive approach than a distributed system but 

may not offer the same level of precision and control. 
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• Integrated BMS: An integrated BMS is a system in which the BMS is integrated directly into the battery 

itself, rather than being a separate component. Integrated BMS systems can be very compact and efficient but 

may be more difficult to repair or replace if something goes wrong. 

 

 
Figure 3. Types of BMS. 

 

Battery management systems are critical components for the proper functioning and safety of rechargeable 

battery systems. Without a BMS, batteries can become damaged or even dangerous, leading to decreased 

performance, shorter lifetimes, or even catastrophic failure. One of the key functions of a BMS is to monitor the 

state of the battery. This includes measuring the battery's voltage, temperature, and other important parameters. 

By monitoring these parameters, the BMS can detect potential problems early, allowing for preventative action to 

be taken before more serious issues arise [10]. 

Another important function of a BMS is to control the charging and discharging process. Proper charging and 

discharging are critical for the health and longevity of a battery, and a BMS can help to ensure that the battery is 

charged and discharged safely and efficiently. Additionally, a BMS can protect the battery from overcharging, 

overheating, and other potentially harmful conditions. Overcharging a battery can lead to thermal runaway, which 

can cause the battery to catch fire or explode. A BMS can prevent overcharging by monitoring the battery's state 

and controlling the charging process. In addition to these safety benefits, a BMS can also help to extend the life of a 

battery. By monitoring and controlling the battery's performance, a BMS can prevent over-discharging or 

overcharging, which can lead to premature battery failure. Additionally, a BMS can help to balance the charge 

across the individual cells in a battery, which can prevent one cell from becoming overcharged or undercharged 

compared to the others [11]. 

 

4. IMPORTANCE OF STUDYING EXISTING BATTERY DATASETS 

Existing battery datasets provide valuable information on battery performance, lifespan, and reliability under 

various operating conditions. Analyzing these datasets can help researchers identify the key performance indicators 

that affect battery behavior, such as temperature, state of charge, and discharge rates. This information can be used 
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to improve battery design, optimize BMS systems, and extend battery lifespan. Studying existing battery datasets 

can also save time and money compared to conducting new experiments or simulations. Real-world data is often 

more reliable than simulations, which may not accurately represent the complex interactions that occur within a 

battery. Access to existing datasets allows researchers to quickly test and validate new ideas and compare their 

results with those of previous studies. In addition to improving battery performance, studying existing battery 

datasets can also help researchers identify new applications for batteries. For example, datasets on the energy 

consumption of buildings or transportation systems can be used to optimize the use of batteries in energy storage 

and grid stabilization. This can contribute to the development of more sustainable energy systems and reduce the 

reliance on fossil fuels.  

However, there are also challenges associated with analyzing existing battery datasets. Data may be incomplete 

or inconsistent, making it difficult to draw conclusions or identify patterns. Additionally, datasets may be 

proprietary or subject to privacy concerns, limiting access to valuable information. Overcoming these challenges 

requires collaboration between researchers and data providers, as well as the development of standardized data 

formats and protocols [12]. 

In short, studying existing battery datasets is essential for advancing battery technology, improving battery 

performance, and identifying new applications for batteries. While there are challenges associated with analyzing 

these datasets, the benefits outweigh the costs. Access to real-world data can save time and money and enable 

researchers to quickly test and validate new ideas. By working together to overcome these challenges, we can 

continue to make progress toward a more sustainable energy future. 

 

5. AVAILABLE DATASETS 

Previous data sets play a very important role in minimizing time and costs, as well as developing new 

algorithms or comparing existing algorithms. Numerous public data sets are available that can be used for this 

purpose. Table 2 shows the existing public data sets on batteries.  

As Table 2 shows, three datasets use the lithium titanate (LCO) cell chemistry, four datasets use lithium iron 

phosphate (LFP) cell chemistry, two datasets use nickel cobalt aluminum (NCA) cell chemistry, five datasets use 

nickel manganese cobalt (NMC) cell chemistry, one dataset uses NMC-LCO cell chemistry, two datasets use NCA, 

NMC, and LFP cell chemistry, and one dataset uses LCO, LFP, NCA, and NMC cell chemistry. The datasets cover 

the years 2008 to 2022. The fast-charging dataset uses 230 cells, which is the maximum. The Prognostics Center of 

Excellence (PCoE) battery dataset was published by NASA.  

 

6. AVAILABLE PARAMETERS OF DATASETS USED IN ALGORITHMS 

To calculate the life of a battery, the various data sets employ a few algorithms, such as the fast-charging 

dataset algorithm, state of health (SoH) estimation algorithm, state of charge (SoC) estimation algorithm, and 

prognostic algorithm. Figure 4 shows the algorithm used by the different datasets. 

In the PCoE battery dataset, the number of cells is 34, the cell form factor is 18650, and the cell chemistry is 

NCA, as shown in Table 2. This data set was released in 2008-2010. The algorithm used to generate predictions 

from this dataset is prognostic, and the employed parameters are voltage, current (measured, load), time, and 

temperature, as shown in Table 3. 

 In the randomized battery usage dataset, the number of cells is 28, the cell form factor is 18650, and the cell 

chemistry is LCO, as shown in Table 2. This data set was released in 2014. The algorithm used to generate 

predictions from this dataset is prognostic, and the employed parameters are voltage, current (measured, load), 

time, and temperature, as shown in Table 3.  

In the Center for Advanced Life Cycle Engineering (CALCE) CS2 dataset, the number of cells is 15, the cell 

form factor is not provided, and the cell chemistry is LCO, as shown in Table 2. This data set was released in 2010-
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2013. The algorithm used to generate predictions from this dataset is SoH estimation, and the employed parameters 

are time (test, date, step), index (step, cycle), current, voltage, capacity (charge, discharge), energy (charge, 

discharge), and internal resistance (AC impedance, ACI phase angle), as shown in Table 3. 

 

Table 2. Data set details. 

Ref. Dataset name Number of cells Cell form factor Cell chemistry Year 

Orzech [13] Prognostics Center 
of Excellence 
(PCoE) battery 
dataset 

34 18650 Nickel cobalt 
aluminum (NCA) 

2008-2010 

Bole, et al. [14] Randomized 
battery usage 
dataset 

28 18650 Lithium titanate 
(LCO) 

2014 

Xing, et al. [15] Center for 
Advanced Life 
Cycle Engineering 
(CALCE) CS2 
dataset 

15 - LCO 2010-2013 

Experimental 
Data Platform 
[16] 

Cycle life 
prediction dataset 

135 18650 Lithium iron 
phosphate (LFP) 

2017-2018 

Attia, et al. [17] Fast-charging 
optimization 
dataset 

230 18650 LFP 2018-2019 

Dubarry and 
Beck [18]  

Synthetic training 
diagnosis dataset 

- 18650 and 26650 LFP 2020 

Dubarry and 
Beck [19] 

Short-term cycling 
performance 
dataset 

- 18650 and 26650 LFP 2020 

BatteryArchive 
[20]  

Long-term 
degradation 
dataset 

86 18650 NCA, nickel 
manganese cobalt 
(NMC), and LFP 

2018-2020 

BatteryArchive 
[20] 

Hawai‘i Natural 
Energy Institute 
(HNEI) dataset 

15 18650 NMC-LCO 2013-2014 

Wang, et al. 
[21] 

Oxford battery 
degradation 
dataset 

8 2018 NMC 2015 

Kollmeyer [22] 18650PF dataset 
(Panasonic) 

1 18650 NCA 2018 

Automotive Li-
ion Cell Usage 
Data Set [23] 

Automotive Li-ion 
cell usage dataset 

1 Pouch cell NMC 2022 

Wang, et al. 
[21] 

Lithium-ion 
battery (LIB) and 
Ultracapacitor 
behavior under 
dynamic stress test 
(DST) and urban 
dynamometer 
driving schedule 
(UDDS) 

1 pack (containing 
4 cells) 

Prismatic LFP 2016 

Zhang, et al. 
[24] 

Battery EIS 
dataset 

12 coin cell LCO 2019 

Kollmeyer, et al. 
[25] 

18650PF dataset 
(Panasonic) 

1 18650 NMC 2020 

Pozzato, et al. 
[26] 

Aging dataset from 
electric vehicle 
(EV) real-driving 
profiles 

10 2170 NMC 2020-2022 

Catenaro and 
Onori [27] 
 

LFP, NMC, 
NCA battery 
dataset 

18 2170, 1865, 2665 NMC, LFP, NCA 2021 

Kollmeyer, et al. 
[28] 

LG 18650HG2 4 18650 NMC 2022 
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Figure 4. Datasets and algorithms used. 

 

In the cycle life prediction dataset, the number of cells is 135, the cell form factor is 18650, and the cell 

chemistry is LFP, as shown in Table 2. This data set was released in 2017-2018. The algorithm used to generate 

predictions from this dataset is SoC estimation, and the employed parameters are time (test, date, step), index (step, 

cycle), current, voltage, capacity (charge, discharge), energy (charge, discharge), internal resistance, and 

temperature, as shown in Table 3. In the fast-charging optimization dataset, the number of cells is 230, the cell form 

factor is 18650, and the cell chemistry is LFP, as shown in Table 2. This data set was released in 2018-2019. The 

algorithms used to generate predictions from this dataset are fast-charging optimization and SoC estimation, and 

the employed parameters are time (test, date, step), index (step, cycle), current, voltage, capacity (charge, discharge), 

energy (charge, discharge), internal resistance, and temperature, as shown in Table 3.  

In the synthetic training diagnosis dataset, the number of cells is not given, the cell form factors are 18650 and 

26650, and the cell chemistry is LFP, as shown in Table 2. This data set was released in 2020. The algorithm used 

to generate predictions from this dataset is SoH estimation, and the employed parameters are cycle (charge and 

discharge), current, voltage, and temperature, as shown in Table 3. In the short-term cycling performance dataset, 

the number of cells is not given, the cell form factors are 18650 and 26650, and the cell chemistry is LCO, LFP, 

NCA, and NMC, as shown in Table 2. This data set was released in 2020. The algorithm used to generate 

predictions from this dataset is SoC estimation, and the employed parameters are incremental capacity, normalized 

capacity, voltage, and degradation, as shown in Table 3. In the long-term degradation dataset, the number of cells is 

86, the cell form factor is 18650, and the cell chemistry is NCA, NMC, and LFP, as shown in Table 2. This data set 

was released in 2018-2020. The algorithm used to generate predictions from this dataset is SoC estimation, and the 

employed parameters are incremental capacity, normalized capacity, voltage, and degradation, as shown in Table 3. 

In the Hawai‘i Natural Energy Institute (HNEI) dataset, the number of cells is 15, the cell form factor is 18650, 

and the cell chemistry is NMC-LCO, as shown in Table 2. This data set was released in 2013-2014. The algorithm 

used to generate predictions from this dataset is a reference performance test, and the employed parameters are 

temperature (C), max SoC, min SoC, charge rate (C), and discharge rate (C), as shown in Table 3. In the Oxford 

battery degradation dataset, the number of cells is 8, the cell form factor is 2018, and the cell chemistry is NMC, as 

shown in Table 2. This data set was released in 2015. The algorithms used to generate predictions from this dataset 

are drive cycle tests and characterization tests, and the employed parameters are charge-discharge cycle, recorded 
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voltage, current, and temperature, as shown in Table 3. In the 18650PF dataset (Panasonic), the number of cells is 

1, the cell form factor is 18650, and the cell chemistry is NCA, as shown in Table 2. This data set was released in 

2018. The algorithm used to generate predictions from this dataset is SoC estimation, and the employed parameters 

are time stamp, step, status, prog time, step time, and cycle, as shown in Table 3.  

In the automotive Li-ion cell usage dataset, the number of cells is 1, the cell form factor is pouch cell, and the 

cell chemistry is NMC, as shown in Table 2. This data set was released in 2022. The algorithm used to generate 

predictions from this dataset is the federal test, and the employed parameters are charge, discharge, and impedance, 

as shown in Table 3. In the lithium-ion battery and ultracapacitor behavior under dynamic stress test (DST) and 

urban dynamometer driving schedule (UDDS) dataset, the number of cells is 1 pack (containing 4 cells), the cell 

form factor is prismatic, and the cell chemistry is LFP, as shown in Table 2. This data set was released in 2016. The 

algorithm used with this dataset is SoC prediction, and the employed parameters are battery current, battery 

voltage, ultracapacity current, ultracapacity voltage, and time, as shown in Table 3. In the battery EIS dataset, the 

number of cells is 12, the cell form factor is coin cell, and the cell chemistry is LCO, as shown in Table 2. This data 

set was released in 2019. The algorithms used to generate predictions from this dataset are SoH and remaining 

useful life (RUL) prediction, and the parameters are current, voltage, temperature, and time, as shown in Table 3.  

In the 18650PF dataset (Panasonic), the number of cells is 1, the cell form factor is 18650, and the cell 

chemistry is NMC, as shown in Table 2. This data set was released in 2020. The algorithm used to generate 

predictions from this dataset is SoC estimation, and the used parameters are time stamp, step, status, prog time, step 

time, and cycle, as shown in Table 3. In the aging dataset from EV real-driving profiles, the number of cells is 10, 

the cell form factor is 2170, and the cell chemistry is NMC, as shown in Table 2. This data set was released in 2020-

2022. The algorithm used to generate predictions from this dataset is EIS tests, and the employed parameters are 

time (date, test, step), step index, cycle index, current, voltage, capacity (charge, discharge), energy (charge, 

discharge), internal resistance, and aux temperature, as shown in Table 3. 

In the LFP, NMC, NCA battery dataset., the number of cells is 18, the cell form factors are 2170, 1865, and 

2665, and the cell chemistry is NMC, LFP, NCA, as shown in Table 2. This data set was released in 2021. The 

algorithm used to generate predictions from this dataset is SoC estimation, and the employed parameters are 

current, voltage, surface temp, time (date, test, step), and step index, as shown in Table 3. In the LG 18650HG2 

dataset, the number of cells is 4, the cell form factor is 18650, and the cell chemistry is NMC, as shown in Table 2. 

This data set was released in 2020. The algorithm used to generate predictions from this dataset is SoC estimation, 

and the employed parameters are step, status, prog time, step time, cycle, cycle level, procedure, voltage, current, 

temperature, capacity, cells, maximum voltage, gassing voltage, break voltage, charge factor, impedance, cold 

cranking, and current energy density, as shown in Table 3.  

 

Table 3. Dataset parameters and algorithm used. 

Ref. Dataset name Algorithm Data variables/parameters    

Gabbar, et al. 
[6]  

PCoE battery 
dataset 

Prognostic Voltage, current (measured, load), 
time, temperature 
  Uzair, et al. 

[7]  

Randomized battery 
usage dataset 

Prognostic 

Ramkumar, et 
al. [8]  

CALCE CS2 dataset SoH estimation Time (test, date, step), index (step, 
cycle), current, voltage, capacity 
(charge, discharge, energy (charge, 
discharge), internal resistance, AC 
impedance, ACI phase angle 

Lipu, et al. [9]  Cycle life prediction 
dataset 

SoC estimation 
  

Time (test, date, step), index (step, 
cycle), current, voltage, capacity 
(charge, discharge), energy (charge, 
discharge), internal resistance, 
temperature 

Uzair, et al. 
[7]  

Fast-charging 
optimization dataset 

Fast-charging optimization, 
SoC estimation 
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Ref. Dataset name Algorithm Data variables/parameters    

See, et al. [10] Synthetic training 
diagnosis dataset 

SoH estimation Cycle (charge and discharge), current, 
voltage, temperature 

Habib, et al. 
[11] 

Short-term cycling 
performance dataset 

SoC estimation  Incremental capacity, normalized 
capacity, voltage, degradation 

Dos Reis, et al. 
[12] 

Long-term 
degradation dataset 

SoC estimation  Incremental capacity, normalized 
capacity, voltage, degradation 

Dos Reis, et al. 
[12] 

HNEI dataset Reference performance test  Temperature (C), max SoC, min SoC, 
charge rate (C), discharge rate (c) 

Orzech [13] Oxford battery 
degradation dataset 

Drive cycle tests and 
characterization tests 

Charge-discharge cycle, recorded 
voltage, current, temperature 

Bole, et al. 
[14] 

18650PF dataset 
(Panasonic) 

SoC estimation  Time stamp, step, status, prog time, 
step time, cycle 

Xing, et al. 
[15] 

Automotive li-ion 
cell usage dataset 

Federal test Charge, discharge, impedance 

Experimental 
Data Platform 
[16] 

LIB and 
ultracapacitor 
behavior under DTS 
and UDDS 

SoC prediction 
  

Battery current, battery voltage, ultra 
capacity current, ultra capacity 
voltage, time  

Attia, et al. 
[17] 

Battery 
electrochemical 
impedance 
spectroscopy (EIS) 
dataset 

SoH, RUL prediction Current charge, voltage charge, 
temperature, time 

Dubarry and 
Beck [18] 

18650PF dataset 
(Panasonic) 

SoC estimation  Time stamp, step, status, prog time, 
step time, cycle 

Dubarry and 
Beck [19] 

Aging dataset from 
EV real-driving 
profiles 

EIS tests  
  

Time (date, test, step), step index, 
cycle index, current, voltage, capacity 
(charge, discharge), energy (charge, 
discharge), internal resistance, aux 
temperature 

BatteryArchive 
[20] 

LFP, NMC, NCA 
battery dataset 

SoC estimation Current, voltage, surface temp, time 
(date, test, step), step index 

Wang, et al. 
[21] 
  

LG 18650HG2 
  

SoC estimation 
  

Step, status, prog time, step time, 
cycle, cycle level, procedure, voltage, 
current, temperature, capacity, cells, 
maximum voltage, gassing voltage, 
break voltage, charge factor, 
impedance, cold cranking, current 
energy density 

 

7. RECOMMENDATIONS  

In the previous section, we detailed the various battery dataset options available for battery-management systems to 

choose from to make correct predictions of battery performance. Based on the study findings, we make the following 

recommendations: 

1. For a BMS to obtain the battery statistics, the parameters must include time (test, date, step), index (step, cycle), 

current, voltage, capacity (charge, discharge), energy (charge, discharge), internal resistance, and temperature. 

2. To calculate a battery cell’s state of health (SoH) or aging, the algorithm must include the calculation of SoC and 

depth of discharge (DoD). 

 

8. CONCLUSIONS AND FUTURE DIRECTIONS 

Due to the widespread use of renewable energy sources and the desire for sustainability, battery-management 

systems have attracted a lot of attention. Battery fitness monitoring is essential for reliably storing power. Approaches to 

estimating battery fitness have been developed for monitoring the final ability and electricity estimation, ability 

prediction, lifestyle and fitness prediction, as well as critical indications related to battery stability and thermal 

management. From the review of the numerous available datasets, we have concluded which parameters should be 
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selected for the collection of data from batteries. Depending on the algorithm used, the datasets include different 

attributes; however, essential variables such as current, voltage, temperature, and time stamp remain the same. 

Additionally, we recommend including certain parameters when building new datasets standards for the algorithms, 

especially for battery safety. Finally, this paper suggests recommendations for battery parameters that can be collected 

through BMS. By feeding accurate statistics to the ML-based algorithm, accidents can be minimized by reducing 

overcharging, deep discharging, and overheating of the battery, as well as predicting the age of the battery and increasing 

its life span. 
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