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The increasing prevalence of internet usage and mobile devices has underscored the 
critical importance of safeguarding personal data. This is especially important in 
Wireless Sensor Networks (WSNs), where information typically requires in-network  
computing and collaborative processing. These computationally demanding approaches 
are not suitable for resource-constrained WSN nodes. Aggregating data effectively while 
protecting user data is a major challenge in wireless sensor networks. Many privacies of 
homomorphism encryption-based WSN data aggregation methods have been created and 
investigated recently. Since cluster leaders (aggregators) may rapidly combine cypher 
texts without decryption, communication overhead is reduced, making these data 
aggregation methods more secure than traditional ones. However, the base station only 
receives aggregated output, causing issues. Initial limits apply to aggregating functions.  
If the aggregated output is the sum of sensing data, the base station cannot acquire the 
maximum value. Second, attaching message digests or signatures to sensory samples 
does not allow the base station to validate data authenticity. In dangerous places, WSNs 
must be energy-efficient and private. In this research, we present a data aggregation 
method known as Energy-Efficient and Privacy-Preserving (E2P2). E2P2 data 
aggregation utilizes less energy and yields more accurate results. Private data 
aggregation with increased accuracy and hybrid encryption is presented in this research. 
The goal is to reduce data transmission and energy use collisions and offset collision -
induced loss. Extensive simulations compare E2P2 to earlier approaches. Experimental 
results show that E2P2 outperforms other algorithms. Good exactness, complexity, and 
safety are demonstrated by theoretical and simulation results.  
 

Contribution/Originality: We suggest an E2P2 data aggregation approach scheme that can reduce data collision, 

data loss, and overhead, all of which serve to prolong the lifespan of a WSN. In order to protect sensitive information, 

we present a hybrid approach that combines data slicing and fabricated pieces. To compromise a node's data privacy, 

an attacker must first break n links belonging to this node and then accurately identify the bogus fragments. The 

untrusted aggregator can be defeated by our technique, as long as the aggregator itself is not compromised. We 

drastically cut the privacy protection protocol's energy and communication requirements compared to existing 

systems. 
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1. INTRODUCTION 

Wireless sensors are currently being employed in a diverse array of sectors. The main issues with wireless sensors 

are their reminiscence capacity, control consumption, transmission bandwidth, and transmission inconsistency . 

Processing and storing data from a wireless sensor network (WSN) require a lot of time and effort. Hence, the sensor 

network stores all data that needs to be processed independently, while the WSNs keep all other data that may be 

used in the future. A decentralized wireless network is the only one that can provide the amount of RAM that data 

storage requires. By storing vast amounts of data, it is also important to protect its privacy, security, and veracity. 

Here, we analyze distributed data storage using the lens of the three security aspects provided by wireless sensor 

networks. Finally, in a wireless network, a sensor's energy consumption is mostly for data processing rather than 

data storage. 

Several battery-operated nodes with data pre-processing and radio communication capabilities make up a WSN. 

By allowing sensor nodes to be moved around, dynamic WSNs are more focused and easier to manage than their 

static counterparts. Hence, dynamic WSNs are often adopted rapidly in applications such as process monitoring, 

mobility streaming, vehicle status checks, and dairy cattle health monitoring. When it comes to many of the most  

essential dynamic WSN applications, privacy in WNS is one of the most significant obstacles to overcome [1-3]. As 

a result, dynamic WSNs have to meet mandatory security requirements. 

Upon obtaining data, sensor nodes transmit it to a sink node located elsewhere in the network. Chan, et al. [4] 

and Yang, et al. [5] have added intrusion detection in cases where some sensors have been compromised. These 

measures are non-intrusive and are designed to protect users' privacy. And then, after establishing secure 

communication lines via cryptography, a few constructive privacy-preserving strategies are offered. Eschenauer and 

Gligor [6] projected the first key pre-distribution system, and subsequent works documented several improved key 

distribution schemes [7-9]. This pre-distribution of keys can be used to build a safe hop-by-hop data aggregation 

technique. A straightforward and efficient application of encryption in data aggregation. Yet the key encryption and 

decryption processes must be carried out locally on each node. As a result, the expense of gathering all that data is 

substantial. Homomorphic encryption was introduced to build an end-to-end secure data aggregation technique, 

which allowed for efficiency in privacy-preserving data aggregation. With this method, it is possible to conduct  

mathematical operations on the ciphertext itself. It is important to remember that key distribution techniques can 

protect information from being exposed to attackers from outside the network. However, in a stricter scenario,  

assurances of in-network secrecy may be required. This means that nodes in the network, including the parent node 

and surrounding nodes, should not have access to any individual's sensitive data. Methods for dealing with these 

problems are discussed in He, et al. [10], Yang, et al. [11], and Groat, et al. [12]. 

As a fundamental method in WSNs, data aggregation [13] is commonly employed to combat the problem of 

excessive power usage. The aggregator can then communicate the total values it calculated from the child sensor 

nodes to the main aggregator. Redundancy and information synthesis will reduce the load on the network and power 

needs. Anybody with a suitable wireless receiver can, however, listen in on and potentially intercept communications 

between sensor nodes during the data aggregation process. To communicate with high-powered computers, the 

attacker may resort to unethical tactics [14-16]. Theft of data and other forms of illegal involvement can do 

significant damage to the network and could even bring about its complete paralysis.  

Since both economy and confidentiality are crucial factors to consider when building data aggregation 

algorithms, this research aims to examine security vulnerabilities in data aggregating techniques and provide a novel 

optimal approach. The nodes' specific energy consumptions, which are used for functions like processing commands, 

CPU operations, send/receive activities, etc., are what keep the network alive and well. Optimizing some variables, 

we suggest an E2P2 data aggregation approach scheme that can reduce data collision, data loss, and overhead, all of 

which serve to prolong the lifespan of a WSN. In order to protect sensitive information, we present a hybrid approach 

that combines data slicing and fabricated pieces. To compromise a node's data privacy, an attacker must first break n 



Review of Computer Engineering Research, 2023, 10(3): 83-95 

 

 
85 

© 2023 Conscientia Beam. All Rights Reserved. 

links belonging to this node and then accurately identify the bogus fragments. The untruste d aggregator can be 

defeated by our technique, as long as the aggregator itself is not compromised. We drastically cut the privacy 

protection protocol's energy and communication requirements compared to existing systems.  

The subsequent section of this paper delineates the organizational structure. The relevant scholarly works are 

examined in Part 2, while Section 3 presents initial findings and models. Section 4 offers specific instances of the E2P2 

algorithm that we put out. The fifth section presents the outcomes and evaluations of our imitations. The study's 

concise summary and an explanation of our future objectives are both included in the following section . 

 

2. RELATED WORKS 

Many privacy-preserving aggregation techniques exist, and they can be used to protect individuals' anonymity 

in a variety of contexts. Algorithms that protect users' anonymity are discussed here:  

Several methods have been demonstrated in the literature for securely protecting sensitive data at its source.  

Randomization is a common technique. The randomization approach is a strategy for protecting privacy by 

introducing randomness into the data. The purpose of this is to hide the information contained in record attributes. 

There is enough extra noise in the data that it's impossible to get at the original numbers. The values of the data are 

disrupted, so methods are developed to create aggregated distributions. Afterward, data mining methods can be 

created to operate on these summative distributions. Historically, randomization has been used to skew results from 

probability distribution-based approaches like surveys. There are primarily two types of privacy-protecting methods 

in use. One method incorporates data perturbation techniques, in which a predetermined distribution is superimp osed 

on previously secret information. The aggregate result can be reconstructed from the distribution of the random 

perturbation. Another method employs the use of random data to hide confidential information. Nevertheless, the 

problem with data perturbation techniques is that they do not provide reliable aggregate outcomes. 

Many useful solutions have been presented to address the problem of connectivity in WSNs. In Xu, et al. [17], 

an SDA technique based on a grid structure is proposed. A cell's nodes are all capable of instantaneous two-way 

communication in the adjoining cells since the entire network was partitioned into a set of nonoverlapping virtual 

cells of a suitable size to guarantee this. Clusters of nodes were formed in accordance with Luo, et al. [18], with one 

node in each group serving as a gateway to the network. With this method, the technique suggested in Luo, et al. 

[18] not only guarantees node connectivity but also increases the convergence speed of the network. The grid  

topology ensures network connectivity, but at the cost of increased computing difficulty as compared to the tree or 

cluster topologies. 

Without a reliable technique to identify interference faults, a receiver node may combine the distorted signals it 

receives into a single aggregate before sending it on to the root node. There will be widespread corruption of network  

signals as a result. In applications where batteries can be recharged within a set amount of time, node/link problems 

in WSN caused by energy drain-out might be regarded as temporary. As a result, even the functional nodes in the 

network must be down during this transition. For the healthy nodes to remain operational during this transition 

period, the method of deploying new redundant nodes as a backup to problematic nodes may not be practical. Instead, 

a method that reconfigures the network by identifying new routes to the BS is a practical and cost-effective alternative. 

Any failures in the nodes serving as intermediaries will not affect the functionality of the healthy sensor nodes because 

of this reconfiguration. 

Castelluccia, et al. [19] suggested a straightforward and unbreakable dynamically homomorphic stream 

cryptography that uses slightly more capacity than the hop-by-hop aggregation method. In order to conceal detection 

and event reporting, Girao, et al. [20] introduced an end-to-end method, which is often more power-efficient than 

hop-by-hop encryption due to its narrower emphasis on the attacker model [20]. Keeping sensor data private without 

interfering with additive data aggregation is the goal of a family of techniques presented by Feng, et al. [21]. All of 

the aforementioned homomorphic encryption methods rely on a symmetric key. These methods' level of security is 
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proportional to the length of the key used. The intractability of the algorithms is crucial to the safet y of the 

asymmetrical secret key systems. It is for this reason that asymmetric secret-key methods are developed. 

Boneh, et al. [22] proposed a homomorphic cryptographically secure election system. Mykletun, et al. [23] 

investigated the applicability of additively homomorphic public-key data encryption for certain types of wireless 

sensor systems; their findings helped them select the optimum public key scheme for a certain topology and set of 

conditions. Ecological fingerprinting may be stored permanently and compactly in encrypted data storage, as 

proposed by Girao, et al. [24]. In order to make secure data aggregation possible on commercially available sensor 

systems, Bahi, et al. [25] proposed an end-to-end encrypted data aggregation method to reduce calculation and 

transmission overhead. For the purpose of protecting data integrity and improving efficiency, Ozdemir and Xiao [26] 

suggested a new method for aggregating hierarchical hidden data using a security homomorphic data aggregation 

approach. Lin, et al. [27] hypothesized a fresh approach to securely compiling confidential information. Zhou, et al. 

[28] organized Secure-Enhanced Data Aggregation, which offers the maximum security for aggregated data of all 

current asymmetric approaches. 

Cluster-Based Privacy Protection Data Aggregation (C-PPDA) was predicted by Dapeng, et al. [29] and by 

Fang, et al. [30] as a revolutionary energy-efficient Secure Data Aggregation Algorithm (SDAA). Karampour, et al. 

[31], Kong, et al. [32], Liu, et al. [33], and Liu, et al. [34] have all proposed protocols for data aggregation in the 

smart grid. In the future, secure multi-party computation [14-16, 35] may also be useful for data aggregation. These 

publications have contributed to the reduction of traffic congestion; however, further efforts are necessary to enhance 

their compatibility with users who have more rigorous privacy demands. 

 

3. PRELIMINARIES  

The network architecture, attack model, and key management method are presented first as background 

information to help set the stage for the introduction. 

 

3.1. Network Model 

For the purpose of this paper, we wide-range the data aggregation in the system by utilizing the aggregation 

tree. The network includes a single base station in addition to 𝑁  individual nodes. These sensor nodes are equipped 

with the capabilities of sensing, calculating data, and transmitting the information. A non-leaf node will receive data 

from its child nodes as part of the process of data aggregation. These non-leaf nodes will then combine the data they 

have received with the data they have collected on their own. The sole tasks that leaf nodes are responsible for are 

data collection and transmission. The accumulated information will be relayed to the hub via the aggregation tree at 

some point in the future. 

Sensor nodes collect information about their surroundings and relay it to the home base using a number of 

different data aggregation methods. We incorporate an additive aggregation function into our model. Many more  

aggregation functions can be derived from the additive aggregation function, making it one of the most fundamental 

aggregation functions. Standard definitions of data aggregation functions include the following:  

𝑧(𝑡) = ℎ{𝑘1(𝑡), 𝑘2(𝑡). . . . . . . . . . . . . . . . . 𝑘𝑚 (𝑡)}                                     (1) 

Where 𝑘1(𝑡) are the data collected from the sensor nodes. 

 

3.2. Attack Model 

An adversary can employ a variety of strategies to get around data privacy protections; the following is a synopsis 

of the opponent's hostile behavior: Attacks based on the study of network traffic. Because wireless communication is 

used in WSNs, it is possible for adversaries to intercept data while it is being transmitted. We can categorize  the 

attacks into two different sorts, namely global attacks and local attacks, based on the range of the attacks. Attacks 
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that target congestion control on a global scale are the core interest of our research because they are the most common 

and straightforward method.  

 

 
Figure 1. Attack model in WSN sample. 

 

A network assault, known as a passive attack, is one in which a system is checked and maybe sometimes inspected 

for open ports and vulnerabilities. Passive attacks are a type of network attack. The objective of a passive attack is to 

acquire knowledge; this type of assault does not entail any action that is taken directly against the target. When a 

hacker launches an active assault on a network, he or she is trying to change information that is already stored on or 

in transit to the target. A wide variety of active attacks exist, each with its own advantages and disadvantages. Yet, 

the threat actor is always accountable for doing anything with the information stored in the system or the gadgets 

on which the data is kept. A node that has been compromised. Attackers, as shown in Figure 1, only need to 

compromise a single node to obtain all of the data and keys it contains. The data that an attacker obtains from other 

nodes can be encrypted, but keys can let them decrypt it. In addition to this, attackers can coordinate their act ivities 

on select compromised nodes in order to conclude the primitive data of their neighbor.  

 

3.3. Key Distribution 

The data in some messages is typically encrypted before transmission to minimize monitoring by malicious 

parties. Our model will make use of a proposed random key distribution technique, and we will briefly go over it 

below. The first step is to build a large key pool containing 𝑀 keys and their associated identities. By sending 

discovery messages, sensor nodes in WSN can determine which neighbor share a common key with themselves based 

on the 𝑚 keys they arbitrarily select from the key pool. When two nodes in close proximity share a key, they form a 

secure connection. A link formed by a subset of nodes can serve as a secure connection if they are unable to stake a 

key. For the aforementioned randomly-generated key distribution system, the likelihood that any given pair of nodes 

share a key is, 

𝑁𝑐 =
((𝑀 −𝑚)!)

2

(𝑀−2𝑚) !𝑀!
                             (2) 

In addition, for every given key, the likelihood of any other node being able to decode the encrypted message is,  

𝑁𝑜 =
𝑚

𝑀
                                              (3) 



Review of Computer Engineering Research, 2023, 10(3): 83-95 

 

 
88 

© 2023 Conscientia Beam. All Rights Reserved. 

In order to produce an elliptic curve (𝐸) of order 𝑚 = 𝑝1 𝑝2 𝑝3, the base station must first create three prime 

(𝑝1, 𝑝2 , 𝑎𝑛𝑑  𝑝3 ). Thereafter, degree Base Station groups of points {𝐴1, 𝐵2, 𝑎𝑛𝑑  𝐶3
}

𝑑  are picked from 𝐸 , in the order 

of 𝑚, rendering to the degree of BS which is defined as degree 𝑑. 

The following formula yields three additional points for each group 𝑔: 

𝑃𝑔 = 𝑝1 𝑝2 𝐴1,       (4) 

𝑄𝑔 = 𝑝2 𝑝3 𝐵1 ,      (5) 

𝑅𝑔 = 𝑝3 𝑝1 𝐶1 ,     (6) 

𝑃1 is used to encrypt the merged data, 𝑄1to keep track of the cluster count, and 𝑅1 to mix the encrypted result 

and fortify data security. A set of keys are then given to the BS. The private key is (𝑝1, 𝑝2 ) and the public key is 

(𝑚, 𝑃𝑔 , 𝑄𝑔 , 𝑅𝑔 , 𝐸). Cluster node masters are given access to the public key, while the BS holds onto the private one. 

Once the BS has generated the key, the Cluster head (C) key generation process can commence at each cluster 

head. For instance, 𝐶(𝑘) produces an elliptic curve (𝐸(𝑘)) and the three primes (𝑝1
𝑘, 𝑝2

𝑘 , 𝑎𝑛𝑑  𝑝3
𝑘).  in that order.  

𝐸(𝑖) can be written as, 

𝑚(𝑖)  =  𝑝1
𝑘 𝑝2

𝑘 𝑝3
𝑘    (7) 

Points are chosen from 𝐸(𝑖) in the sequence 𝑚(𝑖) and grouped into degree 𝐶_𝑑(𝑖) sets by selecting the degree 

𝐶_𝑑(𝑖) sets {𝑁𝑖1
(𝑘) ,𝑁𝑖2

(𝑘) ,𝑎𝑛𝑑  𝑁𝑖3
(𝑘) } degree 𝐶_𝑑(𝑖). The following formula yields three additional points for each 

group 𝑖 : 

𝑈𝑖
𝑘 = 𝑝1

(𝑘) 𝑝2
(𝑘) 𝑁𝑖1

(𝑘)       (8) 

𝑉𝑖
𝑘 = 𝑝2

(𝑘) 𝑝3
(𝑘) 𝑁𝑖2

(𝑘)       (9) 

𝑊𝑖
𝑘 = 𝑝3

(𝑘) 𝑝1
(𝑘) 𝑁𝑖3

(𝑘)     (10) 

Here, we use 𝑈𝑖
𝑘   to encrypt the merged data, 𝑉𝑖

𝑘 to keep track of the cluster number, and 𝑊𝑖
𝑘  to mix the 

encrypted result and strengthen data security. 

 

4. MATERIALS AND METHODS 

 According to the already available literature, the first step is to build a network display in which the nodes 

perform the clustering procedure, then to split each node into many nodes, and finally to randomly select a cluster 

agent for each of the local networks. After that, the central processing units of the individual nodes produce routes 

and hand out keys. The data is encrypted using the base station's public key at each node. A hash value and time 

stamp are generated from the encrypted data. The network agent receives one-of-a-kind information from each 

cluster's nodes. The next step is to compile everything at the cluster agent, compare it to the hash value, and then 

either use the information if it passes muster or throw it away. In the aggregating phase, all the data is combined 

before being transmitted to the entry point. Each node in the cluster sends its data to a centralized server, which uses 

a master key to decrypt and verify the information. 

In this section, we will begin by presenting the fundamental concept of E2P2, and then we will discuss the E2P2 

system in its entirety. It begins with the phase of tree creation and optimization, then moves on to the phase of slicing 

and mixing, and finally the phase of aggregation, as shown in Figure 2.  

 

 

Figure 2. fundamental concept of E2P2. 
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4.1. Energy-Efficient and Privacy-Preserving (E2P2) Data Aggregation 

In this piece, we propose an E2P2 that achieves both low energy consumption and high levels of security. There 

are three stages to this process.  We have the topology-building and optimization stages: The result of our effort to 

generate a regular tree topology is depicted in Figure 3. Each non-leaf node then chooses one of its leaf child nodes 

to act as the "chain head" in order to create a chain. As soon as the topology is established, only the leaf nodes begin 

to partition their information.  

 

 
Figure 3. Constructed tree topology. 

 

At the next step, the leaf nodes encrypt the data and send it along to their closest neighbor. Each node will  

randomly shuffle the bits of data it has received once a specific amount of time has passed. Data is aggregated at each 

node, and that total is then forwarded to the node that spawned it. In due time, all reports will reach headquarters.  

  

 
Figure 4. Design of energy-efficient and privacy-preserving (E2P2) data aggregation. 

 

All of the parents send out "Hello" messages to their surrounding nodes, and the orphans can only respond with 

a "Join" message, as shown in Figure 4. In response to the "Join" message, a parent node will send back an "Accept" 

message. A node will only respond to the first "Hello" message it gets if it receives two. The tree topology is 

established once all of the nodes have located their parents. For the purpose of keeping track of its children's IDs, 

each parent node generates a list. After then, every child node that is not a leaf  node will notify its parents that it is 

not a leaf node by sending a "NOT LEAF" message. Each parent node creates a list of its leaf child nodes by 

considering all of the children that did not respond with the "NOT LEAF" message to be leaf nodes.  

To protect user privacy, leaf nodes randomly slice their data into chunks of size 𝐼𝑟(2 ≤ 𝐼𝑟). In the meantime,  

encrypted data packets will be sent to each node in the network. As a result of data slicing and mixing, nodes will  

combine their raw data with the bits and bobs they get. No information about the primitives is transmitted to the 

nodes that contain them. Only if all 𝐼𝑟 − 1  out-degree links and m in-degree links to a node are hacked will the 

node's primitive data be revealed. The value of 𝐼𝑟, meanwhile, is produced at random. Unless the maximum number 

of out-degree linkages is destroyed, attackers cannot be certain that they have successfully broken the defence. One 

can calculate the likelihood of a leaf node disclosing its own private information as follows: 

𝑃𝑓
𝑀 = 𝛽 ∗ 𝑃𝐼𝑟−1 ∗ 𝑃𝑟 +1     (11) 
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𝛽 symbolising the odds of identifying a node's right component count.  

𝛽 =
1

𝑟𝑚𝑎𝑥 −2
       (12) 

One subset of non-leaf nodes aggregates data from one child node, whereas another subset combines data from 

neighboring nodes with their own. Each child node will receive a report of the totals. The equation is,  

𝑃𝑓
𝑀1 = 𝑃1 ∗ 𝑃𝑟 +1      (13) 

𝑃1 is the chance that a node's child node will leak some of its data, and 𝑃𝑟 +1 is the chance that any node in its in-

degree graph will leak any of its data. The formula for a different class of non-leaf nodes can be deduced using the 

one shown above. 

𝑃𝑓
𝑀2 = 𝑃𝑐 ∗ 𝑃𝑟 +1      (14) 

 

5. NETWORK SIMULATION 

In this part, a wireless sensor network consisting of 900 nodes is taken into consideration. The nodes in this 

network are spread out in a random pattern across 500 × 500 areas. There is a total of 0.5𝐽 of energy in each node. 

Within the context of the simulation, we make use of the TAG system, which is a common data aggregation approach. 

With the use of simulation, we investigate the capabilities of the E2P2 model with regard to the degree distribution, 

the efficacy of privacy - preserving, the network bandwidth, and the lifetime. In terms of these achievements, 

comparisons will be made between the E2P2 and BPDA models, the SMART model, and the ESPART model. 

 

6. PERFORMANCE EVALUATION 

Here, we assess the confidentiality of the data aggregation methods discussed in this research. Here, we take a 

look at how well our schemes protect users' privacy, how efficiently they process data, and how accurately they 

aggregate it all. As a starting point, we utilize TAG, a common data aggregation approach. Data privacy is not 

protected because it was not a design focus when creating TAG. For the sole purpose of comparing it to our 

recommended strategies for efficiency and aggregate accuracy, we employ it. First, we define the privacy metric that 

will be used to measure the efficacy of privacy protection mechanisms. Because of the potential for eavesdropping and 

collusion, subtle data from individual sensor nodes may be compromised. One's privacy might therefore be 

compromised in two ways: Once an unwanted node acquires a transmission key, it may read encrypted sensor 

information. Our key delivery scheme reduces the likelihood that the listener will obtain the shared secret required 

for communicating between 𝑠 and one of its neighbours. A few of 𝑠's neighbours have conspired to steal sensitive 

information. 

If sensor nodes inside a cluster communicate with one another, only members of that cluster will have access to 

the sensitive information. One node in a cluster of size 𝑘 must communicate with the other nodes in the cluster using 

𝑘 − 1 encrypted messages. A node can only access a member's secret information if it has all of that member's keys 

(𝑘 − 1). If not, the confidential information cannot be shared. The 𝑃(𝑚) is calculated as, 

𝑃(𝑚) = ∑ 𝑝(𝑛 = ℎ) (1 −
𝑒𝑚𝑎𝑥
𝑙=𝑞𝑐

(1 − 𝑠 𝑙−1)𝑙)       (15) 

There needs to be some kind of metric used to measure how effective various privacy-preserving strategies are. 

Many other studies have offered a method that can be summarized as follows. The first premise is that 𝑃𝑜ℎ  represents 

the likelihood of eavesdropping at any given node. Indicated by this value is the possibility that every two nodes are 

in cahoots with one another 𝑃𝑐  . In addition, it is assumed in this approach that the two probabilities are equal to one  

another. In that case, the equation would look like this, 

𝑃𝑜ℎ  = 𝑃𝑐  = 𝑠     (16) 

Then, for a specific s, the likelihood that node n's secret information is leaked is,  

𝑃(𝑠) = 𝑠𝐼−1  ∑ 𝑝(𝐼_𝑑 = ℎ) 
𝑒𝑚𝑎𝑥
𝑙=𝑞𝑐

. 𝑠 𝑙      (17) 

The outdegree of the node is 𝐼 − 1, which makes sense. Hence, 𝑃(𝑠) can be written in a generic form as, 
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𝑃(𝑠) = ∑ 𝑝(𝑑 = ℎ) 
𝑒𝑚𝑎𝑥
𝑙 =𝑞𝑐

. 𝑠 𝑙               (18) 

Rather than focusing on the privacy of a single node, this analysis takes into account the privacy of the entire 

network. Table 1 shows that Network1, Network2 and Network3 are the two distinct networks. There are 8 vertices 

in each one. In Network 1 and 3, the nodes' degrees vary widely, however in Network 2, they're all 2.  

 
Table 1. Degree distribution of sample networks. 

Nodes 
Degree 

Network 1 Network 2 Network 3 

A 3 2 3 
B 2 2 2 

C 4 2 2 
D 3 2 2 

E 4 2 4 
F 2 2 3 
G 4 2 2 

H 2 2 4 
 

 

From Table 1, 

𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘  1(𝑠) = ∑ 𝑝(𝑑 = ℎ) 
𝑒𝑚𝑎𝑥
𝑙=𝑞𝑐

. 𝑠 𝑙           (19) 

=
3

8
𝑠2 +

2

8
𝑠3 +

4

8
𝑠4 

𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘  1(𝑠) = ∑ 𝑝(𝑑 = ℎ) 
𝑒𝑚𝑎𝑥
𝑙=𝑞𝑐

. 𝑠 𝑙   = 𝑠2    (20) 

𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘  3(𝑠) =
4

8
𝑠2 +

2

8
𝑠3 +

2

8
𝑠4                 (21) 

In this subsection, we consider a node to have sufficiently safeguarded user privacy if it has a degree of 2. Figure  

5 illustrates the degree distribution among the various models. TAG is a data aggregation technique that does not 

take privacy considerations into account and serves as the foundation for the other models. According to the TAG 

model, the lowest possible degree is 1, and the highest possible degree is 9. Yet, 70 percent of the nodes in the network 

have the lowest possible degree. Upon the completion of the privacy-protecting steps, each of the systems raises the 

lowest degree to 2, and they also raise the supreme degree.  

 

 
Figure 5. Degree of distribution in different nodes. 
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Only the BPDA brings the maximum degree up from 8 to 11, and this occurs across BPDA models. The ESPART 

prototypical and the EBPDA model are identical in that the maximum degree can be raised to 10. In the meantime, 

the SMART model raises the highest degree possible to 14. Because the maximum degree is being increased, some 

nodes that do not require having their privacy kept are being preserved anyway. This is the primary factor that 

contributes to the ineffectiveness of privacy protection measures. 

 

 
Figure 6. The percentage of nodes that are visible in various algorithms. 

 

As can be seen in Figure 6, the percentage of models whose nodes are visible varies greatly. The unprotected 

likelihood of nodes in E2P2 models is higher than in BPDA, SMART, and ESPART models  Figure 6. This is because 

this evaluation method looks at the whole WSN. The exposure probability of a model tends to decrease as the sum of 

its degrees increases. While certain nodes have high privacy protection to a rather high degree after the operation, 

the BPDA, SMART, and ESPART models appear to have better capability in privacy conservation since they spend 

considerably more on idleness. Models built using E2P2 take redundancy into account by focusing algorithmic action 

on the edges with the lowest degrees. Despite the fact that their chances of exposure are greater than average, they 

are still maintained at a uniform rate. 

Figure 7 shows that, as a result, when the number of nodes in a WSN remains constant, the compute consumption 

of a single query is greater than that of E2P2 and SMART. In particular, when only one slicing mechanism (SMAR T-

1) is used, the SMART calculation overhead is lower than the E2P2 overhead. Yet, compared to E2P2, the security 

level of one-slice SMART may be lower. Hence, if you're looking for a compromise between security and 

computational complexity, our technique is the way to go. 
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Figure 7. Computation overhead. 

 

7. CONCLUSION 

Wireless sensor networks benefit greatly from a type of fundamental and efficient algorithm known as secure 

data aggregation. In this study, we present E2P2, a brand-new algorithm for aggregation. In the suggested method, 

a sensor network is structured as an aggregate tree, with links established between the branches.  Structural 

optimization can reduce the number of leaf nodes in the original aggregation tree . Simulation and analysis show that 

our technique outperforms prior art aggregation methods in efficiency without sacrificing privacy. Two major issues 

with WSNs are power consumption and data security. Since sensor nodes tend to be installed in high-risk areas, 

where their data privacy may be more easily compromised than in a cable network, their limited energy may reduce 

the network's lifespan. The suggested E2P2 method is shown to perform well in terms of accuracy, complexity, and 

safety in both analytical and simulated settings. From a security standpoint, E2P2 employs the same method as 

SMART. Hop-by-hop encryption and end-to-end encryption in E2P2 make for an intriguing combination for 

scheming privacy-preserving data aggregation systems. 

In the coming years, our primary focus will be on achieving data aggregation while safeguarding the privacy of 

individuals, all without relying on any trusted intermediaries. Furthermore, our focus will be directed towards the 

enhancement of data aggregation methodologies that exhibit superior efficacy, safeguard the privacy of users, and 

possess the capability to accommodate intricate data formats. 
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