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The current study investigates automated Alzheimer disease diagnosis using radiomic 
feature extraction on magnetic resonance images. Alzheimer’s disease (AD) is a 
progressive, incurable neurological brain disorder. Early diagnosis of AD might 
prevent brain tissue damage and assist with proper treatment. Researchers examine 
numerous statistical and machine learning (ML) techniques for the detection of AD. 
Analyzing magnetic resonance imaging (MRI) is a traditional way of analyzing for AD 
in clinical examination. Diagnosis of AD is challenging because of the similarity in MRI 
statistics and standard healthy MRI information for elderly people. The application of 
DL to earlier diagnosis and automatic classification of AD is gaining immense 
popularity in recent times, as rapid development in neuroimaging techniques has 
generated large-scale multimodal neuroimaging datasets. This study develops a new 
Automated Alzheimer's Disease Diagnosis using Deep Learning Model (AADD-DLM) 
on MRI images. The presented AADD-DLM technique examines the MRI images to 
assist in the AD diagnostic process. In the presented AADD-DLM technique, three 
major processes are involved, namely skull stripping, segmentation, and feature 
extraction. Initially, the AADD-DLM technique uses the U-Net model for the skull 
stripping process, which enables the removal of the skull regions in the brain MRI. 
Next, the QuickNAT model is utilized for an effective brain MRI segmentation process. 
Moreover, the radiomics feature extraction approach is used to generate a useful set of 
feature vectors. For exhibiting the promising performance of the AADD-DLM 
technique, widespread experimentation analysis is made on the ADNI database. The 
optimized model achieves 99.6% accuracy in the ADNI database. The simulation 
outcomes revealed the improved effectiveness of the AADD-DLM technique over other 
recent approaches. 
  

Contribution/Originality: The primary contribution of this study is using DL models to create a reliable MRI 

image analysis model for diagnosing AD. Present a U-Net-based skull stripping approach to remove the skull area 

from a brain MRI. Then a QuickNAT model was proposed for efficient MRI brain segmentation. To generate 

feature vectors, we introduce radiomics features and verify them using the ADNI benchmark dataset.  

 

1. INTRODUCTION 

MRI can be exploited to evaluate the anatomical structure of the brain owing to its ability to contrast soft 

tissues and its high spatial resolution [1]. Generally, MRI was linked with more health hazards than other 

modalities like PET and CT [2]. Understanding brain structure with an MRI and assessing strokes have both 

made tremendous strides in recent years. Brain-related disorders like multiple sclerosis and Alzheimer's disease 
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(AD) can be diagnosed with MRI [3]. The segmenting process of brain MRI captured at distinct times can also be 

utilized for measuring structural variations in the brain. When trying to diagnose something like Alzheimer's 

disease, it becomes increasingly important to correctly categorize and distinguish harmful tissues and the 

surrounding healthy architecture [4].  

An enormous volume of data is needed for more precise diagnoses. However it becomes a challenge for doctors 

who evaluate complex and large MRI datasets and abstract imperative data manually [5]. In addition, there are 

other issues with intra- or inter-operator heterogeneity that make manual reading of a brain MRI tedious and 

error-prone [6]. Therefore, it can be essential to formulate an automatic segmentation technique to offer precise 

outcomes with great confidence. Computerized methods for registration, MRI segmentation, and visualization were 

utilized on large-scale datasets to assist medical practitioners in making qualitative diagnoses [7]. Deep learning 

(DL) is an advanced method; techniques like convolutional neural networks (CNNs), stacked AE auto-encoders 

(SAE), and deep belief networks (DBNs) can mechanically construct further abstract high-level representations of 

learning mechanisms by compiling lower-level features embedded under the dataset. The CNN technique is being 

commonly exploited for object detection, classification, and segmentation, having many advantages [8]: CNN is 

able to receive images directly as input, use spatial data embedding from neighboring pixels, and efficiently lessen 

the model parameter count with the use of subsampling, local receptive domains, and weight sharing [9]. If a CNN 

technique can be trained with MRI scanner, image features can be mechanically retrieved, eradicating the necessity 

of selecting the features manually for learning [10]. In the meantime, ensemble learning benefited from its 

robustness and performance by compiling many learning systems, which were implemented in MRI. 

This study develops a new AADD-DLM on MRI images. There are primarily three steps in the described 

AADD-DLM method: skull stripping, segmentation, and feature extraction. Initially, the AADD-DLM technique 

uses the U-Net model for the skull stripping process, which enables the removal of the skull regions in the brain 

MRI. Next, the QuickNAT model is utilized for an effective brain MRI segmentation process. Moreover, radiomics 

feature extraction approach is used. Obtain a relevant collection of feature vectors of information. For exhibiting the 

promising performance of the AADD-DLM technique, widespread experimentation analysis is made on the ADNI 

dataset. In a nutshell, the paper's main achievements are outlined below: 

• Employ an effective MRI image analysis model for AD diagnosis using DL models. 

• Present a U-Net-based skull stripping process to remove the skull region from the brain MRI 

• Propose a QuickNAT model for an accurate brain MRI segmentation process. 

• Introduce radiomics features for the generation of feature vectors. 

• Validate the results on the benchmark ADNI dataset.  

 

2. RELATED WORKS 

Kong, et al. [11] modelled an image fusion technique to merge PET images and MRIs from AD patients. 

Moreover, the author uses 3D-CNN to assess the efficacy of this image fusion technique in both multi-classification 

and dichotomous errands. The 3-D convolutions of the fused images are employed for extracting the data from the 

features, leading to richer multi-modal feature data. At last, the derived multi-modal traits were predicted and 

classified through a fully connected NN. In Alhassan [12], the authors presented an EFEHO for OTSU 

segmentation, called EFEHO-OTSU. Firstly, exploiting EFEHO in the suggested approach to seek the optimum 

segmentation threshold for the OTSU approach. Secondly, DA-MIDL was suggested for prompt analysis of AD 

and its prodromic stage, MCI. 

Ajagbe, et al. [13] are meant for advancing AD image classifications with DCNN involving CNN and TL 

utilizing MRI and extended estimation metrics, as the capacity and limitations of methods cannot be exposed by 

some metrics. The purpose of this study was to use numerous assessment indicators to assess neurologists' ability 

to categorize AD images into four established categories. This study utilized computer methods, primarily TL and 
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DCNN, for classifying AD. Marwa, et al. [14] developed a DL-related pipeline for precise stratification and 

diagnosis of AD phases. The presented analysis pipeline uses 2D T1-weighted MRI brain images and shallow CNN 

structures. The presented pipeline presents an accurate and fast AD diagnosis module as well as local and global 

classifiers.  

Fang, et al. [15] devised a new structure that ensembles 3 existing DCNNs with multi-modality imageries for 

an AD classifier. Moreover, to reject low discrimination slices of category probability, a ‘dropout’ system was 

presented. Then average reserved slices of all subjects were needed as new features. Liu, et al. [16] modelled a 

multi-model DL structure related to CNN for AD classification through structural MRI data and joint automatic 

hippocampal segmentation. Primarily, a multi-task DCNN technique was built for disease classifiers and jointly 

learning hippocampal segmentation. Afterward, the author framed 3D Dense Net to study of features of 3-D 

patches derived on the basis of the hippocampal segmentation outcomes for the classifier task.  

 

3. THE PROPOSED MODEL 

In this study, we have presented a novel AADD-DLM technique for automated AD diagnosis using brain 

MRIs. In the presented AADD-DLM technique, three major processes are involved, namely:  

• U-Net-based skull stripping. 

• QuickNAT-based segmentation. 

• Radiomics feature extraction. 

 

3.1. Skull Stripping Process 

The areas of the skull are masked in MRIs of the brain by the U-Net method. The U-Net method comprises an 

encoder‐decoder architecture with skip connections [17]. In all the encoding and decoding blocks, two replications 

of convolution layers are used with the same kernel size 𝐾 = (3,3,3). Every convolution layer is then non‐linear 

activation and BN with ReLU. The primary count of feature maps, following the initial convolution layer, was set to 

𝐹 = 32 for each model, and the feature map count is doubled (halved) after every encoding (decoder) block. The 

dropout layer is used afterward in the encoding and decoding layers to implement dropout sampling for uncertainty 

quantification and to avoid over-fitting. Max-pooling afterward, every encoding block halves the feature map 

dimension. Similarly, up-sampling with transpose convolution afterward doubles the feature mapping size, and 

lastly, restores the primary dimension to the outcome. The number of max-pooling functions determines the depth 

𝐷 of 𝑈‐Net framework that is set for𝐷 = 4 for each trained model. The bottleneck blocks restrict data flow from 

the encoding to decoding block and comprise 2 convolution layers, each afterward rectified by linear activation and 

batch normalization. Unlike the encoding and decoding blocks, we don’t apply a dropout layer to the bottleneck 

block. Due to memory limitations, the input brain volume is typically 2 million voxels in size, evenly dispersed 

across the imaging dimension. Then, train the network with the help of the Adam optimization using primary 

learning rates of 0.001. In the process of training, a set of random transformations is applied, for example, rotations 

and translations, to the volume for data augmentation.  

The mixture of Dice scores is summed over each class label, and the categorical cross‐entropy function: 

ℒ = −∑(
2∑ 𝑄𝑟𝑥 (𝑥)𝑇𝑟(𝑥)

∑ 𝑄𝑟𝑥 (𝑥) + 𝑇𝑟(𝑥)
−∑𝑇𝑟

𝑥

(𝑥) log (𝑄𝑟(𝑥)))

𝑟∈𝒮

.                                  (1) 

Now, 𝑄𝑟(𝑥) indicates the softmax outcome of networks at voxel location 𝑥 and 𝑇𝑟(𝑥) denotes the ground 

truth at a similar location. Theoretically, the impact of Dice loss and cross‐entropy is further weighted, however, it 

is found small impact on performance and thereby neglect further weighting.   
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3.2. Image Segmentation Process 

In this work, the Quick NAT model is exploited for the active brain MRI segmentation process, which 

recognizes various regions. Quick NAT [18] includes three 2D FCNN architectures, which segment the input 

image slice-wise alongside axial, sagittal, and coronal axes. After that, the view aggregation phase takes place, 

where the three segmentations generated are integrated to provide a concluding segmentation.  

Every 2D F-CNN models have an encoding-decoding-based structure, with four encoding and decoding blocks 

detached by the bottleneck blocks. The dense connection was added within all the encoding and decoding blocks to 

promote learning of better representations and promote feature re-usability. A skip connection exists between all 

the encoding and decoding blocks, just as in U Net. Dice degradation and gravity nonlinear losses were optimized 

during model training. Quick NAT is trained by simultaneously augmenting 2 loss functions: (1) the multi‐class 

Dice loss and (2) the weighted logistic loss. The logistic loss gives the pixel‐wise probabilistic estimation of 

resemblance between the manually annotated and estimated labels.  

The Dice loss has been stimulated by the Dice overlap ratio, which evaluates resemblance between the 

manually annotated and estimated labels. Initially, it was presented for two‐class classification and extended to 

multi‐class classification. Assuming the expected probability 𝑄(𝑘) of 𝑘 pixel belongs to class 𝑙 and the actual class 

𝑔
𝑙
(𝑘),  

ℒ = −∑𝜔(𝑘)𝑔𝑙(𝑘)log (𝑄(𝑘)

𝑘⏟                
𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝐿𝑜𝑠𝑠

−
2∑ 𝑄𝑙𝑘 (𝑘)𝑔𝑙(𝑘)

∑ 𝑄𝑙
2(𝑘)𝑘 + ∑ 𝑔𝑙

2(𝑘)𝑥⏟              
𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠

.                (2) 

Multiclass logistic loss and Dice loss are two types of loss functions. Then, present a weight 𝜔(𝑘) that 

balances the relative significance of the pixels from the loss.  

Next, apply weight to resolve 2 problems: (i) errors in segmentation at the anatomical boundary and (ii) class 

imbalance. Assuming the frequency 𝑓
𝑙
 of classes 𝑙 from the trained dataset, viz., the 2𝐷 gradient operator𝛻, the 

class prior probability, the trained segmentation 𝑆, and the indicator function 𝕀, the weighted are determined by  

𝜔(𝑥) =∑𝐼

𝑙

(𝑆(𝑥) = 𝑙)
𝑚𝑒𝑑𝑖𝑎𝑛(𝑓)

𝑓𝑙
+𝜔0 ⋅ 𝕀(|𝛻𝑆(𝑥)| > 0)       (3) 

With the vector of each frequency𝑓 = [𝑓1, … , 𝑓𝑁].  

The first term simulates median frequent balancing and compensates for class disparity issues by increasing the 

weight of rare classes in an image. The next term put high weights on anatomical boundary area for encouraging 

accurate segmentation of contour. 𝜔0 is fixed as 
2⋅𝑚𝑒𝑑𝑖𝑎𝑛(𝑓)

𝑓min
 for providing high priority to boundaries. 

 

3.3. Radiomics Feature Extraction Process 

For the generation of feature vectors, radiomics features are utilized in this work. We have extracted a set of 93 

radiomics features. Every single feature class, excluding shape, can be computed either on the derived image or the 

original image, attained by using multiple filters. The shape descriptor is extracted from the label mask and is 

independent of gray value. It can be computed separately from the enabled input image varieties and computed on 

the original image. The radiomics feature is categorized as follows: 

 

3.3.1. First Order Statistics 

It describes the distribution of voxel intensity in the image region described by the mask with basic and widely 

utilized metrics. 
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3.3.2. Shape-Based (3D) 

The attribute was unrelated to the gray-level brightness shipping from the ROI and estimated only on non-

derived pictures and masks. The feature was built using an approximation of the shape calculated using a triangle 

mesh. Initial triangles for mesh construction are found by finding the midpoints of edges connecting voxels between 

and within the region of interest (ROI). A mesh of linked triangles is acquired by linking the vertices, with every 

triangle determined by 3 adjacent vertices that share all the sides accurately with other triangles. This mesh was 

generated with the marching cubes method. The procedure involves stimulating a 2×2 cube with a mask in the 

region. In every position, the corner of cubes is later marked ‘segmentation’ (1) or ‘not segmentation’ (0). By 

representing each corner with a distinct bit of a binary value, an individual cube index could be calculated (0-255). 

This index is then utilized for determining whether triangles can be present in the cube that is determined in the 

lookup table. These triangles can be determined as follows: the normal is continuously oriented in a similar way. It 

can be essential to attain the accurate signed volume utilized in the computation of MeshVolume. 

 

3.3.3. Shape-Based (2D) 

This attribute may only be calculated on masks and images that were not used to create the ROI, as it doesn't 

rely on the gray-level pattern of intensity within the ROI. The feature was developed in the estimated shape 

determined by the circumference mesh. First, the vertex edges are found by finding the midpoint of an edge 

between a pixel that has been added to the ROI and a pixel that has not. A mesh of connected lines is attained by 

interconnecting the vertices, with all the lines determined by 2 adjacent vertices that share points exactly with 

other lines. 

This mesh was created utilizing a modified version of the marching cubes technique. During this process, a 2x2 

square has been stimulated with the mask space (2d). To every position, the corner of squares is next marked ‘not 

segmented’ (0) or ‘segmented’ (1). To give the corners as certain bits in binary numbers, a single square index has 

been acquired (0-15). This index is then employed for determining whether lines can exist from the square that 

determines the lookup table. These lines are determined so that the normal triangle described by this point and 

origin is kept consistent. This outcome has signed value for the surface region of all the triangles; thereby, if 

summed, the superfluous (positive) region contained by triangles partly inside and outside the ROI has been 

correctly cancelled out by the (negative) area of triangles completely outside the ROI. 

 

3.3.4. Gray Level Co-Occurrence Matrix 

It calculates gray-level zone from the image. A gray-level zone can be determined as a count of interconnected 

voxels that share similar gray-level intensity. If the distance is 1, a voxel is considered connected based on the 

infinity norm. It is matrix in that the texture feature is extraction for texture investigation. The GLRLM scheme is 

a process of extracting higher-order statistical texture features. A gray-level run is determined as a pixel line from a 

specific direction with a similar intensity value. 

 

3.3.5. Gray Level Run Length Matrix 

It calculates gray-level zone from the image. A gray-level zone can be determined as a count of interconnected 

voxels that sharesimilar gray-level intensity. If the distance is 1, a voxel is considered connected based on the 

infinity norm. It is matrix in that the texture feature is extraction for texture investigation. The GLRLM scheme is 

a process of extracting higher-order statistical texture features. A gray-level run is determined as a pixel line from a 

specific direction with a similar intensity value. 
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3.3.6. Gray Level Size Zone Matrix 

It is the beginning of Thibault matrices. For texture images f with N gray-levels, it can be represented by GSf 

(s, g) and provides a statistical demonstration by the estimate of the bivariate conditional probability density 

function of an image distribution value.  

 

3.3.7. Neighbouring Gray Tone Difference Matrix 

It measures the differences between the average gray value and gray value of their neighbors in the distance. 

The amount of entire differences for gray-level was kept from the matrix. 

 

3.3.8. Gray Level Dependence Matrix 

It enumerates gray-level dependency from the image. It can be determined as the quantity of interconnected 

voxels in the distance is based on center voxels. The main properties of this scheme are as follows: (i) texture 

feature is simply calculated; (ii) it can be fundamentally invariant in spatial rotation; (iii) it can be invariant in linear 

gray-level transformation and is insensitive to monotonic gray-level transformations.  

 

3.4. Classification 

Previous research has shown that the CNN architecture can be enhanced by increasing the precision of the 

methods used for training and enhancing the standard of the input information; furthermore, it is known that the 

degree to which a model can be optimized depends on the kind of model employed. In the case of multi-layered deep 

learning models, for instance, it is possible to fine-tune the training parameters. The convolution layer of a 

convolutional neural network is responsible for obtaining features, and the quality of removing features is 

proportional to the fourier kernel width. From a compositional standpoint, lines created by adjacent pixels 

frequently from the borders of a picture. The image's texture is made up of a collection of edge lines, and these lines 

are used to create various local patterns. The picture is composed mostly of its local pattern. The network model's 

convolution layer allows for feature extraction and local picture pattern formation in various forms. Although the 

convolution layer will extract more information with a smaller convolution kernel, overfitting issues may arise. 

However, if the convolution kernel too large, the convolution layer maybe unable to retrieve as many features, 

which will reduce the impact of picture classification. As a result, the precision of picture classification may be 

enhanced by optimizing the convolution kernel. Since the CNN model predominantly gathers the image 

characteristics layer by layer via multiple convolution layers, the number of convolution layers impacts the degree 

of accuracy of the model's extraction of characteristics. The features obtained by the model classifier become 

increasingly fine-grained with increasing numbers of convolution layers, which can result in over fitting, while the 

features become increasingly coarse-grained with decreasing numbers of convolution layers, which can result in a 

decline in image classification accuracy. Therefore, convolution layer modification may improve the model's 

precision for classification. 

 

 
Figure 1. Shows the CNN architecture for the proposed model. 
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The depth learning model suggested in this research has to be refined to increase the accuracy of picture 

categorization and identification. A smaller convolutional kernel is selected in the first convolution layer so as to 

derive further details about the features of the picture. Second, the overfitting issue is dealt with by adopting the 

maximum pool sampling procedure into the model. Figure 1 shows the updated photo classification model, which 

has three convolution layers with diminishing convolution kernels in each. Following each convolution layer, the 

output features are supplied into the optimum pooling layer. After processing the input picture data through three 

full connection layers, the model produces the categorization result using a Softmax classifier. 

The convolution layer's parameters for modeling are the dimension and the number of convolution kernels. 

Because the first layer of convolution is close to the image layer that contains the input and is mainly used for 

obtaining the fundamental elements of the image, its parameters significantly affect the feature set. To facilitate the 

computation of characteristics in the next convolution layer, attribute information such as shadow, boundary, and 

lighting of the image must be extracted using a smaller convolution kernel. 

In the convolution layer, the activation function is used to create a map of the characteristics that were 

gathered. As a result, the enhanced CNN model’s the ReLU activation function looks like the following 

mathematical function: 

𝑧(𝑦) = 𝑀𝑎𝑥(0, 𝑦)(4) 

When the activation function of ReLU is used for learning characteristics in a typical convolutional neural 

network model, it may result in the loss of significant characteristic data during picture categorization. Based on the 

current ReLU activation function, it may be enhanced to prevent the loss of relevant features during picture 

categorization. An expression for the optimal activation function is, 

𝑧(𝑦𝑘) = {

𝑦𝑘

 𝑑𝑘
,   𝑦𝑘 < 0

𝑦𝑘 ,   𝑦𝑘 ≥ 0
(5) 

The novel activation function calculation formula not only preserves the negative data within the feature map 

whenever the feature being processed is less than zero, but it also enhances effective distinctive reinforcement 

learning. 

The Softmax function, which uses a supervised learning method to regress the characteristics, is utilized by the 

optimised CNN to determine the photographs. The picture target category 𝐶 can take on any one of 𝐾 possible 

values throughout the categorization process. The cost function of Softmax regression may be written as, for a 

given image training set {𝑎1, 𝑎2. . . . . . 𝑎𝑛} where 𝑎𝑖 is a sample of the training set, 𝑏𝑖 is a category for classifying 

the picture, and 𝑏𝑖 ∈ {1,2, . . . . . 𝐾} is the cost function. 

 

𝑠(𝛼) =
1

𝑁
[∑∑ 1{𝑏𝑙 = 𝑛}

𝑀

𝑚=1

𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝛼𝑚

𝑇 𝑎𝑙)

∑ 𝑒𝑥𝑝(𝛼𝑚
𝑇 𝑎𝑙)

𝑀
𝑛=1

)

𝐿

𝑙=1

]                                                    (6) 

Provided 𝑀 markers are added to the cost function, we can write the likelihood of classifying training sample 

an as group 𝑛 as 

𝜆(𝑏𝑙 = 𝑛||𝑎𝑙; 𝛼) =
𝑒𝑥𝑝(𝛼𝑚

𝑇 𝑎𝑙)

∑ 𝑒𝑥𝑝(𝛼𝑚
𝑇 𝑎𝑙)

𝑀
𝑛=1

(7) 

4. EXPERIMENTAL VALIDATION 

During this study, the experimental outcomes of the presented method can be tested utilizing the benchmark 

ADNI database. A primary purpose of ADNI is to examine when the serial MRI, another biological marker, PET, 

and medicinal and neuropsychological investigation were integrated to measure the progress of MCI and main AD. 

A particular and sensitive marker of very soon AD progress has been assumed for helping scientists and researchers 

working to advance innovative remedies, and observing their performance, and minimalizing medicinal trial time 
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and cost. The ADNI uses the findings of numerous co-investigators from large academic institutions and 

commercial enterprises, and its subjects can be used at more than 50 locations across the US and Canada. One of the 

main goals of ADNI is to enroll 800 adults between the ages of 55 and 90. Of them, about 200 are older, cognitively 

regular people who have been involved for three years, 400 are MCI patients who have been involved for three 

years, and 200 are primary AD patients who have been involved for two years. 

 

 
Figure 2. Sample MRI segmentation results. 

 

Figure 2 shows the sample segmentation results obtained by the proposed model. The features extractions by 

the proposed technique are given below. 
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Figure 3. Shows the illustrates Sample feature extraction results. 
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Figure 3 demonstrates the sample results obtained at the time of feature extraction.  

original_gldm_GrayLevelNonUniformity,   original_gldm_GrayLevelVariance, 

original_gldm_HighGrayLevelEmphasis,   original_gldm_LargeDependenceEmphasis, 

original_gldm_LargeDependenceHighGrayLevelEmphasis, 

original_gldm_LargeDependenceLowGrayLevelEmphasis,  

original_gldm_LowGrayLevelEmphasis,   original_gldm_SmallDependenceEmphasis, 

original_gldm_SmallDependenceHighGrayLevelEmphasis, 

original_gldm_SmallDependenceLowGrayLevelEmphasis,  

original_glrlm_GrayLevelNonUniformity,  

original_glrlm_GrayLevelNonUniformityNormalized, 

original_glrlm_GrayLevelVariance,   original_glrlm_HighGrayLevelRunEmphasis, 

original_glrlm_LongRunEmphasis,  

original_glrlm_LongRunHighGrayLevelEmphasis,  

original_glrlm_LongRunLowGrayLevelEmphasis, 

original_glrlm_LowGrayLevelRunEmphasis,   original_glrlm_RunEntropy, 

original_glrlm_RunLengthNonUniformity,  

original_glrlm_RunLengthNonUniformityNormalized, 

original_glrlm_RunPercentage,   original_glrlm_RunVariance, 

original_glrlm_ShortRunEmphasis,  

original_glrlm_ShortRunHighGrayLevelEmphasis,  

original_glrlm_ShortRunLowGrayLevelEmphasis,  

original_glszm_GrayLevelNonUniformity,  

original_glszm_GrayLevelNonUniformityNormalized, 

original_glszm_GrayLevelVariance, 

original_glszm_HighGrayLevelZoneEmphasis, 

original_glszm_LargeAreaEmphasis,  

original_glszm_LargeAreaHighGrayLevelEmphasis,  

original_glszm_LargeAreaLowGrayLevelEmphasis,  

original_glszm_LowGrayLevelZoneEmphasis,  

original_glszm_SizeZoneNonUniformity,  

original_glszm_SizeZoneNonUniformityNormalized,  

original_glszm_SmallAreaEmphasis,  

original_glszm_SmallAreaHighGrayLevelEmphasis, 

original_glszm_SmallAreaLowGrayLevelEmphasis,   original_glszm_ZoneEntropy, 

original_glszm_ZonePercentage,   original_glszm_ZoneVariance, 

original_ngtdm_Busyness,original_ngtdm_Coarseness,original_ngtdm_Complexity, original_ngtdm_Contrast, 

original_ngtdm_Strength 

 

5. RESULT AND DISCUSSION 

The results of the classification of the 5 stages of Alzheimer's disease using an optimized CNN algorithm are 

discussed in this section. 

Several metrics are frequently used to assess the optimized CNN algorithm's efficiency: Reliability calculates 

the overall percentage of correctly classified cases across all classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝𝑡 + 𝑇𝑛𝑡

𝑇𝑝𝑡 + 𝑇𝑛𝑡 + 𝐹𝑝𝑡 + 𝐹𝑛𝑡
                                                                            (8) 
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The precision function determines the percentage of accurately predicted examples in a given class relative to 

all examples anticipated to belong to that class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝𝑡

𝑇𝑝𝑡 + 𝐹𝑝𝑡
                                                                                                 (9) 

The percentage of correctly anticipated occurrences in a given class out of all occurrences of that category in 

the dataset is known as recall (sensitivity). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝𝑡

𝑇𝑝𝑡  +  𝐹𝑛𝑡
                                                                                                 (10) 

The F1 Score is a consistent indicator of the model's efficiency that is calculated as the harmonic average of 

precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑇2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                                                            (11) 

Confusion Matrix allows for the evaluation of certain misunderstandings by offering a thorough analysis of the 

model's projections over several classes. The confusion matrix values provided in Figure 3 indicate the performance 

of a classification model for Alzheimer's disease, specifically for the five stages: EMCI, LMCI, MCI, AD, and CN. 

The values presented, such as 'EMCI=0.98', 'LMCI=0.98', 'MCI=0.99', 'AD=0.99', and 'CN=0.99', represent the 

classification accuracy for each stage. The value 'EMCI=0.98' suggests that the model attained an accuracy of 98% 

in correctly classifying instances belonging to the EMCI stage. Similarly, 'LMCI=0.98' indicates that the model 

accomplished an accuracy of 98% in accurately classifying instances belonging to the LMCI stage. 

 

 
Figure 4. Confusion matrix. 

 

The value 'MCI=0.99' suggests that the model realized an accuracy of 99% in correctly classifying instances 

belonging to the MCI stage. Similarly, 'AD=0.99' indicates that the model reached an accuracy of 99% in accurately 

classifying instances belonging to the AD stage. Lastly, 'CN=0.99' suggests that the model completed an accuracy 

of 99% in correctly classifying instances belonging to the CN stage. 

These high accuracy values across all stages (ranging from 98% to 99%) indicate that the optimized CNN 

model performed very well in classifying Alzheimer's disease stages based on the provided confusion matrix. The 



Review of Computer Engineering Research, 2023, 10(4): 199-213 

 

 
210 

© 2023 Conscientia Beam. All Rights Reserved. 

model showed strong discriminatory power in distinguishing between different stages, providing accurate 

predictions for each stage, as shown in Figure 4. 

 

 
Figure 5. Accuracy of the classification of Alzheimer's disease. 

 

Figure 5 illustrates the categorization of Alzheimer's disease. If the accuracy attained on training data is 100% 

and on testing data is 99.5%, this suggests that the model has done a very good job of differentiating between the 

illness's stages. A training accuracy of 100% indicates that the model has learned the training data patterns 

extremely well. It can perfectly classify the Alzheimer's disease stages in the training set. This high accuracy 

indicates that the model has captured the intricacies and features specific to each stage during the training process. 

The testing accuracy of 99.5% suggests that the model's presentation is excellent on unnoticed data, which is a 

positive outcome. It implies that the model has generalized well and can accurately classify Alzheimer's disease 

stages in new, unseen instances. The slight decrease in accuracy compared to the training set could be due to the 

presence of more challenging or diverse examples in the testing set. 

Figure 6 illustrates the loss of classification for Alzheimer's disease. 

For the categorization of Alzheimer's disease, the loss values attained on the training and testing data are 0.08 

and 0.10, respectively. A popular artificial intelligence metric called loss measures the discrepancy between a 

model's expected outputs and its actual labels. It measures how well the model is fitting the training data and can 

provide insights into its performance. In this instance, training losses of 0.08 means that the mathematical model’s 

average estimates for the initial data set are extremely close to the actual labels. A lower training loss suggests that 

the model has successfully learned the patterns and features necessary to classify Alzheimer's disease accurately 

within the training dataset. 

Conversely, the testing loss of 0.10 represents the mean variance among the true labels on the hidden testing 

results and the predictions made by the model. It is slightly higher than the training loss, which is expected as the 

model is evaluated on data that it has not been directly trained on. However, a testing loss of 0.10 is still relatively 

low, indicating that the model is generalizing well and performing reasonably accurately on new, unseen data. It's 

worth noting that the loss values should be interpreted in the context of the specific problem and dataset. Even 

though these loss figures indicate that the model is operating effectively, in order to fully comprehend how it 

performs, one must also take into account additional assessment metrics. 
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Figure 6. Loss of the classification of Alzheimer's disease. 

 

The AUC-ROC achieved by the optimized CNN algorithm, as shown in Figure 7, for EMCI classification is 

0.98. This suggests that the model has a good ability to discriminate between cases of EMCI and other phases of 

Alzheimer's disease. The AUC-ROC obtained for the LMCI classification using the optimized CNN algorithm is 

0.98. This suggests that the model performs effectively in identifying cases of LMCI and differentiating them from 

other stages of Alzheimer's disease.  

 

 
Figure 7. ROC-AUC for classification of Alzheimer's disease. 

 

The optimized CNN algorithm achieves an AUC-ROC of 0.99 for MCI classification. This indicates a high level 

of accuracy in distinguishing MCI cases from other stages of Alzheimer's disease. The AUC-ROC obtained for the 

classification of AD using the optimized CNN algorithm is 0.99. This suggests that the model demonstrates 
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excellent performance in identifying AD cases and distinguishing them from other stages. The optimized CNN 

algorithm achieves an AUC-ROC of 0.99 for CN classification. This indicates that the model performs exceptionally 

well in identifying individuals with normal cognitive function and distinguishing them from different stages of 

Alzheimer's disease. 

 

6. CONCLUSION 

In this study, we have presented a novel AADD-DLM system for automated AD diagnosis using brain MRIs. 

Three main procedures are included in the AADD-DLM approach that is being discussed, namely skull stripping, 

segmentation, and feature extraction. Initially, the AADD-DLM technique uses the U-Net model for the skull 

stripping process, which enables the removal of the skull regions in the brain MRI. Next, the QuickNAT model is 

utilized for an effective brain MRI segmentation process. Moreover, the radiomics feature extraction approach is 

used to produce a set of feature vectors that are important. For exhibiting the promising performance of the 

AADD-DLM technique, widespread experimentation analysis is made on the ADNI database. The simulation 

results demonstrated the AADD-DLM technique's greater effectiveness than other contemporary methods. The 

optimized CNN classifiers are used for the accurate classification of AD on brain MRIs. The accuracy achieved on 

the training data of 100% and the testing data of 99.5% for the classification of Alzheimer's disease indicates that the 

optimized CNN algorithm has performed exceptionally well in accurately predicting the disease's stages. 
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