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This study examines the overview of homomorphic encryption technology for data 
privacy. In the era of big data, the growing need to utilize vast amounts of information 
while ensuring privacy and security has become a significant challenge. Homomorphic 
encryption technology has gained attention as a solution for privacy-preserving data 
processing, allowing computations on encrypted data without exposing sensitive 
information. This study introduces the concept of data privacy preservation and explores 
the evaluation of homomorphic encrypted technology. The focus is on analyzing both 
partial and full homomorphic encryption methods, highlighting their respective 
characteristics, evaluation criteria, and the current state of research. Partial 
homomorphic encryption supports limited operations, while full homomorphic 
encryption enables unlimited computation on encrypted data, though both face 
challenges related to computational overhead and efficiency. Additionally, this paper 
addresses the ongoing issues and limitations associated with homomorphic encryption, 
such as its complexity, large encryption volumes, and difficulties in handling large-scale 
datasets. Despite these challenges, researchers continue to refine the technology and 
expand its applications in cloud computing, big data analytics, and privacy-preserving 
computing environments. This study also discussed potential future research avenues 
aimed at improving the scalability, efficiency, and security of homomorphic encryption 
to support broader, real-world applications. Ultimately, homomorphic encryption is 
positioned as a key enabler for secure data utilization in an increasingly privacy-conscious 
digital landscape.  
 

Contribution/Originality: This study provides a comprehensive analysis of partial and full homomorphic 

encryption, focusing on their evaluation metrics and limitations. Unlike previous works, it highlights the specific 

challenges of applying these technologies in large-scale big-data environments and proposes future research 

directions to overcome these barriers.  

 

1. INTRODUCTION 

In the era of big data, Internet user data has shown explosive growth in both type and scale, and these data have 

high value. However, the use of data also has privacy implications. Privacy leakage will affect individual rights and 

interests, but it will also have negative consequences for society. Privacy-Preserving has become particularly 

important in the era of big data. In addition to safeguarding individual rights and interests, protecting privacy also 
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plays a crucial role in maintaining social stability and development. How to provide privacy preservation for sensitive 

user information that may be disclosed? In recent years, this is also the focus of academic and industrial attention. 

In order to protect privacy, based on big data security protection technology, big data encryption schemes in 

different scenarios of big data environments are implemented. With strong applicability, encryption technology can 

be adopted to ensure data security. Encryption technology is one of the most effective means to ensure data security. 

If the information is more important during ordinary data transmission, you can encrypt it and transmit the 

ciphertext, preventing immediate access to the original data even if intercepted in the middle. Although the traditional 

encryption system can ensure the security of long-term storage of data, it cannot analyze and calculate the encrypted 

data because it depends on the sharing of the key between the two parties exchanging encrypted information, and the 

decryption of the data leads to privacy problems. Homomorphic encryption [1] is an effective technology to protect 

user privacy. It allows a third party to operate on encrypted data without decrypting it in advance, and the result 

obtained is the same as that obtained in plaintext. Therefore, the nature of homomorphic encryption also makes it can 

be used in the fields of outsourced computing services, big data analysis, and distributed storage. In recent years, 

homomorphic encryption technology has become a hot research direction of privacy preservation, and is being 

continuously optimized and broken through, and is gradually applied in cloud computing and privacy computing 

scenarios. 

 

2. PRIVACY PRESERVING 

2.1. Overview of Privacy Preserving 

Data privacy refers to the protection of an individual's personal information, behavioral data, and other sensitive 

data. This data can include personally identifiable information, financial information, medical information, social 

media activity, emails, communications records, location data, and more. Data privacy content usually includes data 

collection, data storage, data use, data sharing and data destruction.  

Privacy Preserving in the era of big data faces many challenges, the most important challenges include [2]: 

 

2.1.1. Transparency of Data Collection and Use 

In the era of big data, organizations and businesses widely collect and use data, and excessive collection of 

personal information may increase the risk of data breach or abuse. It is difficult for people to master their privacy 

rights, and organizations and businesses should collect personal information only when necessary and clearly state 

the purpose of collection and how it will be used. 

 

2.1.2. Security of Data Processing 

Cloud servers stores a large amount of data, relying on cloud computing platforms to ensure the privacy of user 

data. The credibility of these platforms greatly influences data security. Big data platform operation and maintenance 

managers may abuse or misuse the disclosure right of users' private data, damaging the confidentiality, integrity, and 

availability of user information or information systems. Therefore, protecting personal information from 

unauthorized access, use, or disclosure requires the use of reasonable technical and physical security measures. 

 

2.1.3. Complexity of Data Sharing and Exchange 

In the era of big data, data sharing and exchange involve the risk of privacy disclosure, and personal identity 

should be effectively anonymized or desensitized to reduce the risk of personal privacy disclosure. 

 

2.2. Privacy Preserving Related Technologies 

Data privacy preservation is the process of ensuring that such data is not accessed, used, or disclosed without 

authorization. With the rapid development and wide application of big data, cloud computing, and mobile Internet, 
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business and user data are facing serious privacy leakage problems. The diversity of big data lead to multi-source data 

fusion, increasing the risk of privacy disclosure. The traditional passive privacy preservation technology, the 

outsourcing of storage and computing, makes the data generator lose the right to know and control the data. At 

present, data privacy preservation technologies usually include data anonymization, data desensitization, data 

encryption, differential privacy, and so on [2]. A Privacy Preserving technology is shown in Table 1. 

 

Table 1. Privacy preserving technologies. 

Privacy preserving 
technology 

Description Methods 

Anonymization technology The process of removing identifying elements 
from the data to prevent re-identification of the 
data subject. 

⚫ K-Anonymity 
⚫ L-diversity  

⚫ Differential privacy (DP)  
Data desensitization 
technology 

Some sensitive information is deformed by 
desensitization rules to achieve reliable protection 
of sensitive privacy data. 

⚫ Static data desensitization 

⚫ Dynamic data desensitization 

Data encryption technology Through mathematical algorithms, the plaintext 
data is converted into ciphertext data, and the 
original data can be restored only through the 
key technology. 

⚫ Homomorphic encryption (HE) 
⚫ Secure multi-party computing 

(SMPC) 
⚫ Federated learning (FL)  

 

3. HOMOMORPHIC ENCRYPTION 

3.1. Overview of Homomorphic Encryption 

Homomorphic encryption, first introduced by Rivest, et al. [1] is a cryptographic technique that enables 

computations on encrypted data without the need for decryption. Homomorphic encryption ensures that the result of 

performing operations on encrypted data and then decrypting it is equivalent to performing the same operations on 

unencrypted data, according to the computational complexity theory. In homomorphic encryption schemes, E is the 

encryption algorithm function, M is the set of all possible messages, and m1 and m2 are subsets of M. If one of the 

conditions in Equations 1 or 2 is satisfied, the scheme is considered either an additive or multiplicative 

homomorphism. 

 

𝐸(𝑚1) + 𝐸(𝑚2) = 𝐸(𝑚1 +𝑚2), ∀𝑚1, 𝑚2 ∈ 𝑀 (1) 

𝐸(𝑚1) × 𝐸(𝑚2) = 𝐸(𝑚1 ×𝑚2), ∀𝑚1, 𝑚2 ∈ 𝑀 (2) 

  

Homomorphic encryption schemes consist of a key generation algorithm, an encryption algorithm, decryption 

algorithm, and an additional evaluation algorithm [1]. These schemes not only perform basic encryption operations 

but they also enable various computations directly on ciphertext without requiring decryption at each step. This 

reduces communication costs and shifts computational tasks, effectively balancing the workload across different 

parties. Furthermore, homomorphic encryption ensures that only the final result is decrypted, not the intermediate 

ciphertext, enhancing information security. The working principle of homomorphic encryption is shown in the Figure 

1.  

 

 
Figure 1. Homomorphic encryption processing. 

Source: Gentry [3] and ElGamal [4]. 
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1) Homomorphic encryption stage: the data to be processed needs to be encrypted using an encryption algorithm. 

This usually involves encrypting the data using a public-key encryption algorithm to generate ciphertext. 

2) Calculation processing stage: various calculation operations can be performed on the ciphertext, such as addition, 

multiplication, comparison, etc. The ciphertext perform these operations, eliminating the need for decryption to 

plaintext.  

3) Result extraction stage: After the calculation is completed, the ciphertext can be extracted from the obtained 

results and decrypted into plaintext. This process usually requires decryption using a private key. 

 

3.2. Type of Homomorphic Encryption 

As machine learning gains tractions, the cryptography community persists in enhancing and innovating 

homomorphic encryption, while the security concerns in data computational analysis demand attention. Therefore, 

the research on machine learning based on homomorphic encryption is also constantly developing. Since then, many 

homomorphic encryption algorithms have appeared. At present, according to the types and quantities of operations 

allowed on encrypted data, homomorphic encryption algorithms can be divided into partial homomorphic encryption, 

somewhat homomorphic encryption, and full homomorphic encryption. 

 

3.2.1. Partial Homomorphic Encryption (PHE) 

PHE can only perform certain types of operations on ciphertext, such as addition, multiplication, or both, but 

only a limited number of operations are allowed. It mainly includes multiplication homomorphic encryption 

represented by the RSA (Rivest-Shamir-Adleman) algorithm and ElGamal algorithm, addition homomorphic 

encryption represented by the Paillier algorithm, and finite-degree homomorphic encryption represented by Boneh-

Goh-Nissim scheme [4, 5]. RSA homomorphic encryption is one of the earliest homomorphic encryption algorithms 

proposed and widely studied. It uses the multiplication homomorphism of the RSA public key cryptosystem to 

perform multiplication operations on the ciphertext. However, the efficiency of RSA homomorphic encryption is 

relatively low, limiting its use in practical applications. Paillier homomorphic encryption algorithm is based on 

discrete logarithm problem and has high computational efficiency. It supports addition and multiplication on 

ciphertext and can solve the efficiency problem of RSA homomorphic encryption.  

At present, PHE (Partial Homomorphic Encryption) algorithms are mainly used in the industry because of the 

constraints of performance and other factors. Paillier homomorphic encryption algorithm is widely used in the fields 

of security computing, privacy preservation and data sharing. PHE's (Partial Homomorphic Encryption) research 

focuses on its safety and computational efficiency. 

 

3.2.2. Somewhat Homomorphic Encryption (SHE)  

SWHE refers to homomorphic addition and homomorphic multiplication that can support a finite number of 

times, and homomorphic properties of cryptosystems are limited to addition or multiplication operations. Such as 

BGN05 scheme [6] it is constructed based on the difficult problem of bilinear mapping and can support not only any 

multiple homomorphic addition but also a homomorphic multiplication without increasing the length of the 

ciphertext. 

 

3.2.3. Full Homomorphic Encryption (FHE) 

A full homomorphic encryption algorithm can do infinite addition homomorphic and multiplicative homomorphic 

operations without decryption. It mainly includes the first-generation scheme represented by Gentry scheme, the 

second-generation scheme represented by BGV (Brakerski-Gentry-Vaikuntanathan) scheme and BFV (Brakerski-

Fan-Vercauteren) scheme, the third-generation scheme represented by GSW (Gentry-Sahai-Waters) scheme, and the 

CKKS (Cheon-Kim-Kim-Song) scheme, which supports the approximate calculation of floating-point numbers and so 
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on. FHE's research focuses on improving computing efficiency and reducing computing overhead. 

 

3.3. The Development Stage of Homomorphic Encryption 

The goal of homomorphic encryption algorithm, a significant area of study in cryptography, is to process data in 

its encrypted form while maintaining its confidentiality upon extraction. Gentry [3] proposed a fully homomorphic 

encryption algorithm that allows arbitrary computational operations to be performed on ciphertext [3]. That is, any 

operation can be performed on the plaintext of encrypted data without decryption. Over a decade of research has led 

to a rough division of the total homomorphic encryption algorithm into three stages. The three stages of FHE are 

shown in Table 2. 

 

Table 2. The three stages of  fully homomorphic encryption (FHE).  

Generation Feature Scheme Limitation 

The first 
generation 

⚫ Based on ideal lattice construction 
⚫ Somewhat homomorphic encryption 

scheme 
⚫ To control the noise growth by 

bootstrapping technology 

It is just the ideal 
Scheme 

⚫ Large key size 
⚫ High computational 

complexity 
⚫ Low efficiency  
⚫ Lack of practical 

application 

The second 
generation 

⚫ Based on LWE (Learning with 
errors). 

⚫ Partial homomorphic encryption 
scheme 

⚫ To solve the problem of dimension 
expansion by key switching 
technology 

⚫ To control the noise by Modulus 
Switching technology 

⚫ Get rid of reliance on bootstrap 
technology 

⚫ Meets most applications 

BGV(2011) 
LTV (Linder-
Vaikuntanathan)(2
012) 
BFV (Brakerski-
Fan-Vercauteren) 
(2012) 
BLLN (Bos, 
Lauter, Loftus, and 
Naehrig) (2013) 

⚫ Public key size grows 
when using key exchange 
technology 

The third 
generation 

⚫ Based on GSW (Gentry-Sahai-
waters)  

⚫ The ciphertext is in matrix form 

⚫ It does not need key exchange 
technology and mode exchange 
technology 

⚫ It is no longer necessary to introduce 
the calculation key in the process of 
homomorphic calculation 

⚫ Use simpler algebraic operations 

FHEW (Fast fully 
homomorphic 
encryption over 
the torus) (2014) 
TFHE (Torus 
fully homomorphic 
encryption) 

(2016） 

⚫ High computational cost 

⚫ Low execution efficiency 

 

3.4. The Limitations of Homomorphic Encryption  

The key to homomorphic encryption is that homomorphic encryption is its ability to perform computational 

operations on ciphertext while maintaining data confidentiality during the result extraction phase. This means that 

during the calculation process, no one can gain access to the original data, and only authorized users with the 

corresponding private key can decrypt and obtain the results. It protects the privacy of the data while also allowing 

users to perform calculations and actions without exposing the data itself. It is suitable for privacy preservation in 

big data scenarios. 

The implementation of homomorphic encryption usually relies on mathematically complex algorithms and 

cryptographic principles, such as RSA homomorphic encryption, Paillier homomorphic encryption, and so on. These 

algorithms leverage challenging issues like discrete logarithm problems and large number decomposition to 

safeguard data confidentiality and enable encrypted computation operations. However, homomorphic encryption 

usually requires higher computing resources and longer encryption time, and low performance has always hindered 

the application of homomorphic encryption in big data environments. 

At present, homomorphic encryption schemes still have many operational limitations [7-11]. 
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3.4.1. Finiteness of Operation 

Homomorphic encryption requires a fixed depth of multiplication, resulting in finiteness of addition and 

multiplication operations. Only integer data is supported. At present, homomorphic encryption cannot perform 

maximum, minimum, comparison, and exponential operations. 

 

3.4.2. The Calculation Cost is Large 

Homomorphic encryption’s computational complexity is typically higher than that of traditional encryption 

algorithms, so it requires more computational resources and time.   

 

3.4.3. Large Encryption Volume 

Homomorphic encrypted ciphertext is usually longer than plaintext, which increases the cost of data storage and 

transmission. 

 

3.4.4. Unable to Handle Large-Scale Data 

Due to the high computational overhead, homomorphic encryption is usually unable to handle large-scale data. 

This means that it is only suitable for specific application scenarios, such as secure computing and privacy preservation 

of small-scale data. 

 

3.4.5. Limited Security 

Homomorphic encryption needs to be calculated under the premise of ensuring security, which may be limited 

for some specific operations. For example, in complete homomorphic encryption, if the wrong key or parameter is 

used, the results of the calculation may be leaked. 

 

3.4.6. Relatively New Technology 

Homomorphic encryption is a relatively new encryption technology, and its security and reliability need to be 

further verified and improved. 

 

4. RELATED WORKS OF HORMOMORPHIC ENCRPTION 

Homomorphic encryption, as an "ideal" scheme to achieve cloud computing security, has the outstanding feature 

that it can effectively compute the plaintext corresponding to the encrypted data without decrypting the encrypted 

user data. Due to the huge computation cost and space consumption inherent in homomorphic encryption, privacy-

preserving decision tree classification algorithm is faced with the defects of low computational efficiency and large 

space consumption. In theory, the fully homomorphic encryption scheme can carry out infinite addition and 

multiplication operations, so that it can carry out arbitrary operations. 

In order to make the continuous authentication system have the characteristics of high precision and privacy 

preservation, machine learning algorithm is combined with privacy preservation scheme, and homomorphic 

encryption scheme is combined with logistic regression, so that the system has the characteristics of privacy 

preservation and high precision, but the system takes a long time to run. Full homomorphic encryption is the highest 

level of homomorphic encryption technology, but its design and implementation are very complicated, and the 

computational efficiency is low. With the improvement of homomorphic encryption efficiency, there are many 

research achievements based on homomorphic encryption. In recommendation systems, national encryption will be 

an increasingly promising way to protect user privacy. Most of the research on using homomorphic encryption to 

train machine learning models and fully realize secure outsourcing computing uses the logistic regression algorithm. 

Cheon, et al. [7] proposed the integrated gradient descent (GD) method of logistic regression, which reduced 

the expected number of GD iterations. Since the horizontal parameters of HE increase linearly with the number of 
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iterations, the integration method gets a lot of results, which reduces the running time of the whole learning process 

in the encrypted state and the storage of encrypted data. Since the polynomial approximation of sigmoid function and 

the approximate calculation of homomorphic encryption for arithmetic of approximate numbers have small errors in 

each iteration, machine learning technology is selected as logistic regression, and HE scheme is selected as HEAAN 

(Homomorphic Encryption for Arithmetic of Approximate Numbers). However, the integration method is a general 

method that is applicable not only to the logistic loss function but also to any strongly convex loss function over a 

compact domain and any other HE schemes. This scheme achieved good performance in training small logistic 

regression models, but their solution only allowed the computation of a very small number of features. 

Wei-jing, et al. [8] proposed a smart grid data aggregation scheme based on Homomorphic Encryption: 

improved group signature, Paillier encryption system, and ElGamal signature algorithm. This scheme not only 

anonymizes the real identity of users, provide fine granularity privacy preserving of electrical data, but also track the 

real identity of malicious signers. This scheme can greatly protect users' privacy information in smart power grids. 

It effectively solves the problem that smart electricity meters and other network devices leak users' privacy when 

collecting, processing, and transmitting a large amount of data. 

Chandrakar and Hulipalled [9] proposed the use of pseudo-anonymity and homomorphic encryption to encrypt 

privacy, using Hadoop to realize homomorphic encryption. Since homomorphic encryption allows computation in 

encrypted data, data is split among multiple nodes in Hadoop cluster to perform parallel algorithms, which provides 

greater privacy and performance than previous methods. It also supports data mining in an encrypted form, ensuring 

that the cloud never sees the raw data during mining. Safer than existing technology. It outperforms prior art due to 

its implementation in the Map Reduce framework and its short running time. 

Cortés-Mendoza, et al. [12] proposed three homomorphic cryptographic logistic regression gradient descent 

algorithms based on residual systems. These algorithms apply ciphertext to train, test, and execute predictions. 

Consequently, the algorithms allow for secure deployment in untrusted environments. The complicated tasks of 

managing and analyzing data are reduced in a cloud computing environment. The proposed algorithms are compared 

against four classical non-homomorphic logistic regression algorithms, a homomorphic algorithm based on the 

Residue Number System (RNS) and batch gradient descent, and two state-of-the-art homomorphic algorithms. The 

homomorphic algorithm working on encrypted data achieved nearly similar accuracy as the non-homomorphic, with 

resulting improvements, especially during the training process and classifying elicited data. This shows the 

practicality of training and classifying (in a logistic regression scenario) on encrypted models. However, further 

investigations of the efficiency and conciseness of the algorithms will be important so that polynomial approximation 

lengths and data set variability can be analyzed, including levels [10]. 

Homomorphic encryption has gained popularity with the rise of the internet and the cloud computing, as well as 

increasing demands for secure applications such as ciphertext search, electronic voting, and multi-party computing. 

Its advantages in computational complexity, communication complexity, and security have attracted growing 

research interest in theoretical and practical applications. For instance, homomorphic encryption can address privacy 

concerns in cloud computing environments by encrypting sensitive user data before analysis, such as medical and 

financial records. Additionally, it enhances the security of interactions between untrusted parties on blockchain 

systems [11]. 

With the improvement of homomorphic encryption efficiency, research results and applications based on 

homomorphic encryption have wide and important applications in ciphertext data computing under distributed 

computing environments, such as e-commerce, government data management, artificial intelligence, financial services, 

cloud computing, healthcare, etc. Homomorphic encryption technology can help e-commerce platforms protect user 

privacy and improve data security. In the field of government data management, homomorphic encryption technology 

can help government agencies protect the privacy of citizens' data and improve the efficiency of data processing and 

analysis. Homomorphic encryption can help healthcare organizations share patient medical data while protecting 



Review of Computer Engineering Research, 2024, 11(3): 130-139 

 

 
137 

© 2024 Conscientia Beam. All Rights Reserved. 

patient privacy. The use of homomorphic encryption in cloud computing can solve the problem that cloud service 

providers cannot guarantee the privacy of data [13]. Homomorphic encryption technology can realize the safe 

calculation and processing of data, while protecting the privacy of data. Homomorphic encryption technology can 

help banks and financial institutions achieve secure data processing and analysis. Financial institutions can use 

homomorphic encryption technology to encrypt customer data for calculation and analysis, thereby protecting the 

privacy and security of customer data. 

Tian, et al. [14] proposed a remote authentication privacy protection scheme based on user biometrics for 

identity hiding, which adopted DT-PKC (Double Trapdoor Public Key Cryptosystem) homomorphic encryption 

algorithm to protect user behavior data. The security model included biometric and user privacy. A secure Euclidean 

distance computing protocol is constructed to authenticate user identity. The experimental results show that using 

1024-bit DT-PKC algorithm, it takes 20s to run the secure Euclidian distance calculation protocol with 400-

dimensional feature vectors. 

Wei-jing, et al. [8] introduced a smart grid data aggregation scheme that integrates El-Gamal signature 

algorithm, Paillier encryption system, and an enhanced group signature with homomorphic encryption. This 

approach effectively conceals the identities of users while simultaneously safeguarding electrical data with greater 

precision. Also, it has the capability to monitor the genuine identities of malicious actors, thereby improving the 

security of the smart grid. During the collection, processing, and transmission of data, this method mitigates the 

privacy risks associated with network devices, including smart meters. 

Chandrakar and Hulipalled [15] proposed a privacy-preserving methodology that utilizes pseudonymous and 

homomorphic encryption that is integrated into the Hadoop framework. The schemes partitions the encrypted across 

multiple nodes in a Hadoop cluster for parallel processing, thereby improving performance and privacy. In order to 

guarantee that the raw data remains concealed from the cloud during processing, it supports encrypted data mining. 

In addition to providing superior performance in comparison to existing methods, this approach also minimizes 

downtime when integrated into the MapReduce framework. 

Kumar, et al. [16] developed a privacy protection scheme for healthcare centers that is specifically designed for 

decentralized multi-hospital platforms. This scheme is based on homomorphic encryption and blockchain architecture. 

Blockchain ledger technology eliminates the need for a central server, decentralizing federating learning models and 

enabling hospitals to securely share encrypted federated models while protecting data privacy. By combining 

blockchain and federated learning, a novel paradigm for the secure exchange of medical image data across 

decentralized networks is being introduced.  

Although homomorphic encryption algorithm is important in theory and has been applied in some specific 

scenarios, its computational complexity and efficiency are still challenges to be solved. Current research focuses on 

algorithm design, improvement, and optimization, as well as exploring feasibility and practicality in practical 

applications. With the development of cryptography and computer science, more efficient and powerful homomorphic 

encryption algorithms are likely to emerge in the future. 

 

5. CONCLUSIONS 

Homomorphic encryption is an ideal scheme for cloud computing security. Its outstanding feature is that it can 

effectively calculate the plaintext of encrypted data without decrypting encrypted user data. Because of the huge 

computing cost and space consumption inherent in homomorphic encryption, privacy preservation decision tree 

classification algorithm faces the defects of low computing efficiency and large space consumption. In theory, the total 

homomorphic encryption scheme can perform an infinite number of addition and multiplication operations, so that 

arbitrary operations can be performed. Homomorphic encryption is widely used in cloud computing, privacy 

preservation, data sharing, and other fields. Researchers are exploring how to apply homomorphic encryption to more 

scenarios and developing corresponding application systems and tools. Homomorphic encryption plays an important 
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role in secure cloud computing, privacy preservation, and data sharing. It enables privacy preservation and data 

processing without exposing sensitive personal information. However, because homomorphic encryption algorithms 

are so complex, their computational efficiency is relatively low, and it is still an active research field. In short, 

homomorphic encryption is a field full of challenges and opportunities, and its research and application prospects are 

very broad. 
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