Review of Computer Engineering Research

2026 Vol. 13, No. 1, pp. 1-85

ISSN(e): 2410-9142
ISSN(p): 2412-4281

DOI: 10.18488/76.v1811.4709

© 2026 Conscientia Beam. All Rights Reserved.

Qcheck for
updates

Comparative analysis of machine and deep learning models with text embeddings for sentiment

analysis

Monika Verma'*
Rajkumar Jain®

Sandeep Monga®

Article History
Received: 7 August 2025
Revised: 12 November 2025
Accepted: 28 December 2025
Published: 15 January 2026

Keywords

Fast text

Long short-term memory
Naive bayes

Random forest

Sentiment analysis
Support vector machine
Text classification
TF-IDF

“Department of Computer Science and Engineering, Oriental University,
Indore, Madhya Pradesh, India.

'Email: monikaverma0os@rediff.com

*Email: rajjain.ce@gmail.com

*School of Computing Science and Engineering, VIT Bhopal University,
Kothrikalan, Sehore, Madhya Pradesh, India.

‘Email: smonga6@gmail.com

(+ Corresponding author)

ABSTRACT

This study presents a comprehensive comparative evaluation of traditional machine
learning (ML) algorithms Naive Bayes, Random Forest, and Support Vector Machine
(SVM) against a deep learning model, Long Short-Term Memory (LSTM), using three
distinct text embedding techniques: Term Frequency-Inverse Document Frequency
(TF-IDF), FastText, and Word2Vec. A dataset comprising 30,001 social media posts was
employed to assess performance across multiple evaluation metrics, including accuracy,
precision, recall, F1-score, ROC-AUC, and log loss. Experimental findings reveal that
the combination of LSTM with Word2Vec embeddings achieves superior performance,
recording an accuracy of 92.65%, an F1-score of 94.37%, a ROC-AUC of 95.70%, and the
lowest log loss value of 0.2074. Among the classical machine learning models, Random
Forest emerged as the most effective, outperforming Naive Bayes and SVM in terms of

WordaVec. balanced accuracy and generalization capability. The results underscore the pivotal

influence of embedding representation in sentiment analysis and demonstrate that deep
learning models, when integrated with semantically rich embeddings, can effectively
capture contextual dependencies within textual data. The study thus provides valuable
insights into developing robust sentiment analysis frameworks and recommends future
exploration of hybrid and ensemble learning approaches to enhance generalization and
interpretability in real-world natural language processing applications.

Contribution/Originality: This study contributes to the existing literature on sentiment analysis by conducting
a comparative evaluation of machine learning and deep learning models with multiple embedding techniques. It
documents the superior performance of LSTM with Word2Vec and highlights how embedding choice significantly

impacts classification. The study suggests hybrid and ensemble extensions.

1. INTRODUCTION

Sentiment analysis, an essential task in natural language processing (NLP), focuses on detecting and categorizing
emotions and opinions expressed in text [17]. With the rapid increase of user-generated content across platforms such
as social media, product reviews, and online forums, sentiment analysis has gained importance in domains like market
research, customer feedback monitoring, and business intelligence. Despite its wide applicability, two central
challenges persist: selecting classification models that generalize effectively across diverse datasets and designing
text representations that capture linguistic nuances [27].

Traditional machine learning methods, including Naive Bayes, Random Forest, and Support Vector Machines

(SVM), remain widely used due to their efficiency and interpretability [3, 47. However, these models often struggle

© 2026 Conscientia Beam. All Rights Reserved.

https://orcid.org/0009-0008-4781-1034
https://orcid.org/0000-0002-9804-5850
mailto:monikaverma03@rediff.com
mailto:rajjain.ce@gmail.com
mailto:smonga6@gmail.com
https://www.doi.org/10.18488/76.v13i1.4709

Review of Computer Engineering Research, 2026, 13(1): 1-35

to capture contextual and sequential dependencies in text. Deep learning approaches, particularly Long Short-Term
Memory (LSTM) networks, have shown superior performance in modeling temporal dependencies, thereby
addressing these limitations [57. Equally critical is the choice of embedding techniques for feature representation, as
embeddings strongly influence model accuracy and robustness [67.

In this study, three embedding techniques—TF-IDF, Word2Vec, and FastText are evaluated with four models:
Naive Bayes, Random Forest, SVM, and LSTM. Each embedding captures unique aspects of textual semantics: TF-
IDF emphasizes word frequency and importance, Word2Vec captures semantic similarity using neural embeddings
[7], and FastText extends Word2Vec by incorporating subword information, improving performance on rare and
unseen words. The primary objective of this work is to conduct a comparative evaluation of these models and
embeddings using performance metrics such as accuracy, precision, recall, F1-score, ROC-AUC, and log loss.
Experimental results demonstrate that LSTM combined with Word2Vec yields the best performance, achieving
92.65% accuracy and a 94.37% F1-score, while Random Forest outperformed other classical classifiers. These findings
underscore the importance of selecting suitable embeddings and models for effective sentiment classification.

The remainder of this paper is organized as follows: Section 2 reviews existing machine learning and deep
learning approaches to sentiment analysis. Section 3 outlines the methodology, including models, embeddings, and
evaluation metrics. Section 4 describes the experimental setup and implementation. Section 5 presents and analyzes

results, and Section 6 concludes with key findings and future directions, including hybrid and ensemble extensions.

2. LITERATURE REVIEW

By analyzing customer sentiment, companies can extract meaningful insights that help in shaping strategies and
improving overall customer experience. Several studies have experimented with different sentiment categorization
models for customer reviews using machine learning algorithms such as Logistic Regression, Random Forest, SVM,
LSTM, and BERT. Notably, the innovative sequential mechanisms of BERT achieved 94.2% accuracy with an AUC-
ROC of 0.97, demonstrating its ability to capture complex semantic patterns better than competing models. These
findings emphasize the scalability of sentiment analysis but also highlight challenges such as noisy data,
computational costs, and ethical concerns [17. In addition to digital text, some research has extended sentiment
analysis to physical documents by employing handwriting-to-text conversion (HTC). Using ML and DL methods,
studies on datasets such as Twitter, Kaggle, IAM, and Amazon reviews report over 90% accuracy in polarity and
emotion classification with the proposed ESIHE AML model, demonstrating applicability in modern communication
[27]. Similarly, the integration of sentiment information with econometric models has been tested for economic
forecasting. For example, combining sentiment analysis with ARDL models improved inflation prediction in
Romania, outperforming SARIMA and conventional models [37.

Although sentiment analysis has been widely studied in English, research in other languages remains limited.
One study on Arabic cyberbullying detection used TT-IDF features with SVM, Naive Bayes, Random Forest, and
XGBoost, where Random Forest achieved 80.9% accuracy, underscoring the potential and challenges of extending
sentiment analysis to low-resource languages [4]. The impact of Industry 4.0 on sustainability has also been explored
through sentiment analysis applied to Scopus abstracts, highlighting benefits for resource efficiency, environmental
protection, and economic growth [57].

Hybrid methods continue to attract attention. For instance, an intent sentiment analysis model combining
Multinomial Naive Bayes, SMOTE, and XGBoost classified tweets on the Village Fund initiative with 96% accuracy,
precision, recall, and F1-score, confirming the effectiveness of ensemble approaches [67]. Sentiment analysis is also
applied to Speech Emotion Recognition (SER). A multilingual SER model using MFCCs with Random Forest and
XGBoost achieved 91.25% accuracy on Urdu data, demonstrating promise for multilingual human—machine
interaction [77]. In recommendation systems, sentiment-aware book recommendations have been enhanced through

hybrid deep learning architectures combining BERT embeddings, TextBlob sentiment tagging, and ensemble models

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

of LSTM, BILSTM, GRU, and CNN. The model achieved an accuracy and F1-score of 98.21%, demonstrating the
role of sentiment in improving personalization [87. Similarly, comparative studies on classifiers (Naive Bayes, J48,
BFTree, and OneR) applied to Amazon and IMDB datasets highlight the importance of algorithm selection, with
OneR achieving 92.34% global accuracy [97.

Beyond commerce, sentiment analysis has informed healthcare prediction. By examining global data from CDC,
WHO, and social media platforms, researchers found sentiment trends could aid in epidemic forecasting, including
COVID-19, reinforcing the role of sentiment analysis in public health [107. Financial applications are equally
prominent, where SA models combined with sentiment lexicons were used to predict stock market fluctuations
between 2018 and 2023, revealing that investor mood significantly influences market trends [117.

The exponential rise in e-commerce and social media content has accelerated the development of sentiment
analysis techniques, spanning from traditional machine learning approaches to advanced transformer models such as
GPT, BERT, and T'5. These comparative studies reveal both strengths and weaknesses of existing methods and chart
directions for future advancements [127]. Social media, particularly Twitter, has been a major testing ground for SA
techniques, with transformer-based models and hybrid approaches yielding robust performance [187. However,
consistent results depend heavily on preprocessing, feature selection, and transformation, which remain key factors
in improving model accuracy [147].

In cybersecurity, sentiment analysis has been applied to SMS classification (ham, spam, and cyber-malicious),
improving threat detection capabilities and providing a foundation for Al-enhanced cyber risk evaluation [157].
Hybrid frameworks combining deep learning models (LSTM, CNN, MLP) with classical ML algorithms (Naive
Bayes, Random Forest, Gradient Boosting, KNN, Decision Tree) further demonstrate improvements in accuracy and
robustness, with LSTM achieving up to 99% accuracy on Facebook data [167].

Disaster management research has also leveraged sentiment analysis of social media posts (2018—2023). Results
show disaster-related conversations are often negative, highlighting the value of real-time multilingual models for
effective crisis response [177]. Applications extend into tourism, where SA models tested on Kaggle datasets have
ranked algorithms by I'1-score, accuracy, and precision, offering actionable insights for businesses and governments
[187. Similarly, sentiment analysis has been extended to regional languages such as Bengali, where TIF-IDF features
and tree classifiers achieved 92% accuracy, demonstrating the potential for low-resource NLP [197.

Recent hybrid deep learning models combining CNNs with transformer architectures have demonstrated
superior performance on benchmark datasets like Sentiment140, IMDb, and Amazon, achieving a precision of 94.3%,
a recall of 93.8%, and an AUC of 97.2%. Importantly, interpretability tools such as SHAP and LIME increase
transparency for business applications [207]. Other ensemble frameworks integrating CNN, LSTM, BiLSTM, and
BERT report 94.95% accuracy on Twitter datasets, reinforcing the effectiveness of combining pre-trained and
sequential models [217].

Sentiment analysis has also been investigated for mental health applications. One study compared lexicon-based,
machine learning, and hybrid methods to detect depression in online conversations, noting challenges such as bias
and privacy while emphasizing the role of multimodal data [227]. The broader literature additionally documents the
use of SA across multiple domains, including marketing, politics, healthcare, and e-commerce, as Al-powered
algorithms are increasingly leveraged to transform unstructured text, images, and videos into actionable intelligence

This paper proposes a deep CNN-based model for real-time fake currency note detection, focusing on feature
extraction from image patterns. Experimental results demonstrate high accuracy and robustness, highlighting CNN’s
effectiveness for security and financial applications [24]. Finally, domain-specific sentiment dictionaries, such as those
built for Turkish cosmetic product reviews, achieved over 93% accuracy with SVM, highlighting the growing

importance of tailored resources for effective sentiment classification [257.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

3. METHODOLOGY
3.1. TF-IDF (Term Frequency - Inverse Document Frequency)

Meaning: The total frequency of occurrence (TF-IDF) is a numerical statistic that indicates the significance of a term in a
text in comparison to a collection of documents, often known as a corpus. In the fields of text mining and information retrieval, it
is often used.

Formula:

TF —IDF (t,d) = TF (t,d) X IDF (t) (1)

Where, TF (Term Frequency): Assesses the number of times a certain phrase occurs in a given text.

IDF (Inverse Document Frequency): The weight of common words (such as "the," "is," and "and") is reduced in
order to determine the significance or uniqueness of a particular vocabulary item.

Purpose:
e Used in search engines to rank documents based on relevance.
e Helps in feature extraction for machine learning models.

e Improves document similarity calculations.

3.2. Algorithm Steps for Text Classification using TF-IDF and Machine Learning Models

The process of text classification using TF-IDF features and machine learning classifiers can be summarized as
follows.

Algorithm 1: Text Classification Framework.

Input: Raw textual dataset with labels.

Output: Predicted class labels and performance metrics.

1. Data Preparation.

The dataset is loaded and preprocessed to ensure consistency. Textual labels are mapped to binary numerical
values (Real — 1, fake — 0). The corpus is then divided into training (80%) and testing (20%) subsets using stratified
sampling to preserve class distribution.

2. Feature Representation

A TF-IDF vectorizer is applied to transform textual data into numerical feature vectors. Common English
stopwords are removed, and the vocabulary size is limited to 10,000 terms to enhance efficiency while preserving
discriminative features. The vectorizer is fitted on the training set and applied to both training and testing data to
ensure consistency.

3. Model Training

Three classifiers are considered for evaluation: Multinomial Naive Bayes, Random Forest (with 100 estimators),
and Support Vector Machine with a linear kernel. Each model is trained on the TF-IDF transformed training data
and subsequently used to generate predictions on the test data.

4. Model Evaluation

The predictive performance of each classifier is assessed using multiple evaluation metrics, including Accuracy,
Precision, Recall, F1-score, ROC-AUC, Log-Loss, and Matthews Correlation Coefficient (MCC). These metrics
collectively capture classification accuracy, error trade-offs, discriminatory power, and robustness to class imbalance.

5. Comparative Analysis

Results from all models are compiled into a structured table to facilitate direct comparison. Graphical

visualizations, such as bar charts, are employed to highlight differences across models, with annotated values

improving the interpretability of the performance gaps.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Set up vectorizer with stop

Initialize TF-IDF vectorizer |y

Convert training text into TF-IDF

Al Fit and transform training data

Transform test data Apply trained model 10 test text

Figure 1. TF-IDF vectorization process consists of three key steps.

There are three main components to the TF-IDF vectorization process shown in Figure 1: The first step is to
initialize the TF-IDF vectorizer with parameters such as stop words and feature limits. The second step is to fit and
transform the training data into a TF-IDF matrix. The third step is to transform the test data so that the trained
model can extract features from it. Machine learning and NLP rely on this procedure to transform textual data into

numerical representations.

Initialize Train models
classifiers predictions

Figure 2. Machine learning model training sequence consists.

In Figure 2, we can see the three main steps that make up the training sequence of a machine learning model:
initializing the classifiers, training the model to optimize its parameters using data, and finally, making predictions
using the trained model to produce outputs based on fresh input data. The development and deployment of machine

learning models are made more efficient using this methodical approach.

3.8. Fast Text
Meaning: The Artificial Intelligence Research team at Facebook created FastText, a word embedding model.
‘When dealing with uncommon or out-of-vocabulary terms, FastText is superior to Word2Vec because it represents
words as a collection of character n-grams rather than as atomic entities.
Purpose:
e Generates word embeddings that can handle morphological variations of words.
e Improves text classification, machine translation, and Named Entity Recognition (NER).

e Works well with languages with complex morphology (e.g., German, Russian).

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

3.4. Algorithm Steps for Text Classification using Fast Text and Machine Learning Models
Algorithm 2: Text Classification with FastText Representations.
Input: Text corpus with labeled instances.
Output: Predicted class labels and performance comparison across classifiers.
1. Dataset Preparation
The dataset, stored in tabular format, is loaded into a data structure (e.g., Pandas DataFrame). The text column
(Ultimate_text) serves as the feature space, while the target column provides class labels. The dataset is divided into
training (80%) and testing (20%) subsets using stratified sampling, with a fixed random state for reproducibility.
2. Embedding Training
Fast Text embeddings are trained using the training subset to capture subword-level semantics. The embedding
dimension is fixed at 200, with a context window of 15 tokens. Words occurring fewer than five times are excluded
to reduce noise, and parallelization across CPU cores ensures efficiency.
3. Feature Representation
Each document is mapped into a dense vector by averaging the FastText embeddings of its constituent words.
Documents containing words absent from the vocabulary are assigned a zero vector, ensuring dimensional
consistency across all samples.
4. Model Training.
Three classifiers are employed for comparative evaluation.
e Naive Bayes: A Bernoulli variant applied to binarized feature representations.
e Random Forest: An ensemble of 100 decision trees trained with bootstrap aggregation to reduce variance.
e Support Vector Machine (linear kernel): A margin-based classifier effective for linearly separable feature spaces.
Each model is trained on the FastText-derived training vectors and used to predict class labels on the test set.
5. Performance Evaluation
The predictive ability of each model is assessed using accuracy, precision, and the confusion matrix. These metrics

respectively measure overall correctness, the reliability of positive predictions, and the distribution of classification

errors across classes.
6. Comparative Analysis
Results are consolidated into tabular form and visualized for clarity. Classifiers are compared based on their

relative strengths, and the best-performing approach is identified according to precision-recall trade-offs and overall

accuracy.
Window
The context window)
size for word Min_court
associations
The minimum word
frequency o be
Vect v considered
ector_size =
w Trained
The dimension of fast text
the (('. ord mOdel
embeddings
Workers
: The number of CPU
X1_train cores utilized for

T fraining
he dalaset used for

fraining the model

Figure 3. Fast text model process involves five key parameters.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Figure 3 shows parameters X1_train, vector_size, window, min_count, and workers that define various aspects
of the FastText model training process. X1_train represents the training dataset, vector_size defines the dimension
of word embeddings, min_count sets the minimum word frequency threshold to be considered, and workers indicate

the number of CPU cores used for training. Taken as a whole, these settings make FastText the best model for

.- Random forest classifier

f = Train model

learning word representations quickly and accurately.

Naive bayes classifier -

.]
Train model -- -

-

Machine

Fit on training data - 4
! learning

Predict on test data - - model ~- Predict on test data
training

- Fit on training data

- ——— =

= Train model

- Fit on training data

e L

~- Predict on test data
Figure 4. Machine learning model training and prediction process.

A number of different classifiers, including the Naive Bayes Classifier, the Random Forest Classifier, and the
SVM, are trained and assessed as part of the process shown in Figure 4 for Machine Learning Model Training and
Prediction. Model training, data fitting, and test data prediction are the three processes that each and every classifier
must perform in order to be considered complete. To improve the accuracy of predictions and the capacity to
generalize them to data that has not yet been observed, these models are implemented as components of a centralized

framework for machine learning model training.

3.5. Algorithm Steps for Text Classification using LSTM and Fast Text Word Embeddings
Algorithm 8: LSTM-Based Text Classification Framework.
Input: Preprocessed text corpus and labels.
Output: Predicted class labels and performance evaluation.
1. Dataset Preparation
The dataset is divided into training and testing subsets (e.g., 80/20 split). A tokenizer is fitted on the training
text to construct a vocabulary of word indices. Text data are converted into sequences of indices corresponding to
tokens, and all sequences are padded or truncated to a fixed maximum length (100 tokens) to ensure uniformity of
input.
2. Embedding Initialization
FastText embeddings are trained on the training text or imported from a pre-trained model. Parameters typically
include a vector dimension of 100, a context window of 5 tokens, and a minimum word frequency threshold. An
embedding matrix is constructed by aligning the tokenizer vocabulary with the FastText embeddings, ensuring that
each word index maps to its corresponding vector representation.
3. Model Architecture
An LSTM-based neural network is constructed using a sequential design.
e Embedding Layer: initialized with the FastText embedding matrix, transforming input indices into dense

vectors.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

e LSTM Layer: Contains 128 hidden units with dropout regularization to capture long-range dependencies and
mitigate overfitting.

e Output Layer: A dense layer with sigmoid activation for binary classification.
The model is compiled with the Adam optimizer, binary cross-entropy loss, and accuracy as the primary
evaluation metric.

4. Model Training

The LSTM is trained on the padded training sequences and corresponding labels, using a batch size of 64 for 10
epochs. A validation split of 20% is applied to monitor generalization and prevent overfitting through early stopping
criteria.

5. Performance Evaluation

After training, the model is evaluated on the test set using accuracy as the principal performance metric.
Additional measures such as precision, recall, F1-score, and ROC-AUC can be computed to provide a comprehensive

assessment of classification effectiveness.

Initialize
Train FastText embedding Retrieve word
model matrix vectors
/—\'\

(

| +~0
3

al BN
] (3] N
Define lterate Store

parameters vocabulary embeddings
Figure 5. Fast text embedding creation process consists.

tlle

W

The Figure 5 illustrates the five main phases in the creation process of fastText embedding: establishing a
foundation for the FastText model through training; defining essential settings in the 'Defining Parameters' section;
setting up the embedding matrix, which serves as a framework for organizing word embeddings; performing a
vocabulary iteration to confirm processing of every word; storing embeddings for later use; and retrieving learned
word vectors. This procedure enables the efficient production of word vectors for natural language processing

applications.

Model definition

Add embedding layer \/

Add LSTM layer \/

Add dense layer \/
T e

Compile model

Train model

v :I: N

Trained LSTM model
Figure 6. Building and training an LSTM Model process consists.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

The process of developing a trained model follows a sequential order, as shown in Figure 6. An Embedding Layer
is added to handle word representations after model definition. The next step is to process the output with a Dense
Layer, after which an LSTM Layer is added to capture the temporal dependencies. Optimization and loss functions
are defined by compiling the model. Finally, the trained LSTM model is prepared for prediction by executing the

training process.

3.6. Word2Vec
Meaning: The Word2Vec model is a neural network-based model that was created by Google for the purpose
of generating word embeddings. This model maps words with similar meanings to vector representations that are
close to each other.
It has two main training approaches:
1. Continuous Bag of Words (CBOW): This model makes predictions about a target word based on the words
that are around it.
2. The skip-gram algorithm, which analyzes surrounding words based on a target word.
Purpose:
e Captures semantic relationships between words.
e Used in NLP applications like machine translation, chatbot development, and text classification.

e Helps in recommendation systems and document clustering.

3.7. Algorithm Steps for Fake News Detection using Word2Vec and Machine Learning Models
Algorithm 4: Word2Vec-Based Text Classification Framework.
Preprocessed text corpus with binary labels.
Output: Predicted labels and comparative performance metrics across classifiers.
1. Dataset Preparation
The dataset is imported from a structured file and mapped into binary numerical labels (Real — 1, fake — 0).
The data are partitioned into training and testing subsets using an 80:20 split with stratification to maintain class
balance.
2. Embedding Initialization
Pre-trained word2vec-google-news-300 embeddings are loaded from the Gensim repository. Each word in the
vocabulary is represented as a 300-dimensional dense vector trained on a large news corpus, capturing both
syntactic and semantic information.
3. Feature Representation
Each document is transformed into a fixed-length vector through the following procedure: (i) tokenize the
sentence into words, (ii) retrieve embeddings for in-vocabulary tokens, (iii) compute the mean vector across all
tokens, and (iv) assign a zero vector when no valid tokens are present. This ensures consistent dimensionality
across all instances.
4. Feature Normalization
To improve classifier stability, feature vectors are scaled into the [0,17] range using Min—Max normalization.
This step is applied independently to training and testing sets to avoid data leakage.
5. Model Training
Three machine learning classifiers are trained on the Word2Vec representations.
e Naive Bayes (Multinomial variant): Assumes conditional independence of features and models text
likelihoods.
e Random Forest: An ensemble of 100 decision trees trained via bootstrap aggregation, improving robustness

to feature noise.

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

e Support Vector Machine (linear kernel): Optimizes a margin-based decision boundary in high-dimensional
space.
6. Performance Evaluation
Each model is assessed on the test set using multiple evaluation measures, including Accuracy, Precision,
Recall, F1-score, ROC-AUC, Log-Loss, and Matthews Correlation Coefficient (MCC). Confusion matrices are
generated to illustrate misclassification patterns.
7. Comparative Analysis and Visualization
Results are aggregated into a performance table for cross-model comparison. Visualization techniques,

including bar charts and heatmaps, are employed to highlight strengths and weaknesses across classifiers and to

i Word2Vec embedding

support the interpretability of the outcomes.

Machine learning models -

-

Multinomial Naive bayes -4 = . ' .

)) r - Tokenization
Random forest classifier - 1 Fake news :r - {Wiordivedior retiievai
Support vector machine - -E detection -

process :r - Mean vector computation

Model training - *E

' '~ Zero vector handling
Prediction making - -

Feature normalization

r - MinMaxScaler

L]

r- Training data normalization
L]

s Testing data normalization

Figure 7. Fake news detection process consists of three main components.

In Figure 7, there are primarily three steps to the process of detecting fake news: using machine learning models,
embedding Word2Vec, and normalizing features. Among the taught and utilized machine learning models for
prediction are support vector machines, random forest classifiers, and multinomial naive Bayes. Tokenization, word
vector retrieval, mean vector calculation, and managing zero vectors are all part of Word2Vec embedding, which
quantitatively represents text. To ensure that the model's performance is consistent across testing and training data,
feature normalization uses methods like MinMaxScaler to standardize the data. All of these components work

together to make false news identification more precise and trustworthy.

3.8. Algorithm Steps for Text Classification using Word2Vec and LSTM

Algorithm 5: Word2Vec—LSTM Text Classification Framework.

Input: Pre-processed text corpus with binary labels.

Output: Predicted labels and evaluation metrics.

1. Dataset Preparation.

The dataset, containing text samples and their corresponding labels, is divided into training and testing subsets
(80% and 20%, respectively). A tokenizer is applied to the training text to construct a vocabulary of indexed tokens.
Text sequences are generated from the tokenizer and standardized to a fixed maximum length of 100 tokens using
padding, ensuring uniform input dimensions.

2. Embedding Initialization.
Word embeddings are generated using the Word2Vec algorithm trained on the training text. The embedding

dimension is fixed at 200, with a context window of 15 words and a minimum frequency threshold of five occurrences.

10
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

An embedding matrix is constructed with dimensions (V+1)x200, where V is the vocabulary size. Each entry in the
matrix corresponds to a token’s Word2Vec vector; unseen words are initialized as zero vectors.
3. Model Architecture
An LSTM-based neural network is built using the following components:
e Embedding Layer: Initialized with the Word2Vec embedding matrix to project input tokens into a dense
vector space.
e LSTM Layer: Consisting of 128 hidden units, with dropout and recurrent dropout (0.2 each) to improve
generalization.
e Output Layer: A dense unit with sigmoid activation for binary classification.
The model is compiled using the Adam optimizer, binary cross-entropy loss, and accuracy as the primary
evaluation metric.
4. Model Training
The model is trained for 10 epochs with a batch size of 64. Twenty percent of the training set is reserved for
validation to monitor performance and reduce overfitting.
5. Performance Evaluation
The trained model is evaluated on the test data. Classification effectiveness is assessed primarily by accuracy,
while additional measures such as Precision, Recall, F1-score, and ROC-AUC may be included for a more

comprehensive evaluation.

Train
Word2Vec Set context Set number Populate
model window size of workers matrix

-]
[+]
-]
Q
-]
]
]
N

Set embedding Set minimum Initialize zero
dimension word frequency matrix

Figure 8. Word2Vec model training and embedding matrix creation process consists.

Several essential processes comprise the process of creating the Word2Vec model training and embedding matrix
(Figure 8): the process of teaching word representations using the Word2Vec model; embedding dimension setting,
which determines the size of the vector; choosing the size of the context window, which controls the number of nearby
words to take into account; establishing a word frequency minimum to ensure only pertinent terms are used;
allocating workers to achieve maximum computational efficiency; preparing the structure for embeddings by
initializing the zero matrix; and filling up the matrix, which is used for natural language processing applications to

store learned word vectors.

11
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Model definition -

Sequential model - 2
1

r- Training data
]

.) LSTM model)
Embedding layer ? building and r Epochs
LSTM layer -1 training r- Batch size
Dense output layer - < '~ Validation

Model compilation

:r- Optimizer

] .
r - Loss function

L ‘ .
~- Evaluation metric

Figure 9. LSTM model building and training process consists of three main stages.

Model Definition, Model Compilation, and Model Training are the three primary steps in the LSTM Model
Building and Training Process shown in Figure 9. The LSTM, Dense Output, and Embedding layers make up a
Sequential Model in Model Definition, which is how LSTM models are organized. Choosing an Optimizer, creating
a Loss Function, and deciding on an Evaluation Metric are all parts of the Model Compilation process. At last, the
model is trained using Training Data, and important hyperparameters such as Batch Size, Validation, and Epochs are

adjusted to maximize learning and generalization during Model Training.

3.9. Comparison

Tables 1 and 2 provide a comprehensive comparison of text representation methods and classification models
used for sentiment analysis. Table 1 highlights the strengths and weaknesses of TF-IDF, FastText, and Word2Vec,
where TF-IDF is simple but lacks context, FastText handles rare words effectively, and Word2Vec captures semantic
meaning but fails on unseen terms. Table 2 contrasts LSTM, Random Forest, SVM, and Naive Bayes across
dimensions like computational cost, interpretability, training time, and robustness. LSTM excels in handling
complex, long texts but is resource-intensive, while Random IForest and SVM offer a balance of speed and accuracy,
and Naive Bayes remains a fast, lightweight baseline. Together, these tables guide the selection of appropriate model-

embedding combinations for real-world sentiment analysis tasks.

Table 1. Comparison of different methods.

Method Type Strengths ‘Weaknesses
TF-IDF Statistical Good for document relevance, simple to | Ignores context, not good for semantic
compute. similarity.
FastText | Deep Handles rare words, good for complex Requires more training data
Learning languages
Word2Vec | Deep Captures semantic relationships Cannot handle out-of-vocabulary words
Learning

12
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Table 2. Comparison of methods based on different parameters.

Best Use Cases

Deep Sentiment
Analysis, Context
Understanding, Long

General Purpose
Sentiment Classification,
Feature-Rich Datasets

Short Text
Classification, High
Precision Tasks

Baseline Sentiment
Analysis, Large-Scale
Datasets

Memory Usage

Very High (Requires
Large VRAM)

Medium (Optimized for
Trees)

Medium (Depends on
Feature Space)

Low (Lightweight
Model)

Hyperparameter
Tuning Importance

High (Batch Size,
Learning Rate,
Optimizers)

Medium (Number of
Trees, Max Depth)

High (Kernel Choice,
Regularization)

Low (Few Parameters

Needed)

Handles noise well

Yes (with regularization
and attention

Yes (Robust to Noisy
Features)

Yes (If Properly Tuned)

No (Sensitive to Noisy
Inputs)

Works well with
imbalanced data

Yes (With Weighted
Loss or Data

Yes (Using Class
Weights and Sampling)

Yes (With Proper
Kernel Selection)

No (Struggles with
Class Imbalance)

Augmentation)
Inference Time Zm&:.E (Slower Than Fast (Optimized with Fast .Qm%m&m:% with Very m,u.mﬁ .Q:mgzﬂ
Traditional Models) Trees) Linear Kernel) Predictions)

Training Time

Very long (needs more
epochs)

Medium (Parallel
Training Possible)

Medium (Depends on
Kernel and Dataset)

Short (Trains Very Fast)

Interpretability

Low (Difficult to
Explain)

Medium (Feature
Importance Available)

High (Supports Decision
Boundaries)

High (Probabilistic
Explanation)

Accuracy (General)

High (Requires Large
Data)

Medium-High (Feature
Dependent)

Medium-High (With
Hyperparameter
Tuning)

Medium (Works Best
with Clean Data)

Computational Cost

Very High (Requires
GPUs and TPUs)

Medium (Parallel
Processing Available)

Medium (Linear Kernel
is Faster)

Low (Highly Efficient)

Handling Large Data

High (Needs GPU and
Large RAM)

Medium (Can be
parallelized)

Medium (Depends on
Kernel Selection)

High (Handles Large
Datasets Efficiently)

Word Embeddings

TF-IDF / Word

TF-IDF / Word

Feature Extraction (Word2Vec/FastText/ Embeddings Embeddings TF-IDF
GloVe)
Method LSTM Random Forest SVM Naive Bayes

4. IMPLEMENTATION

4.1. Dataset

The dataset used in this study consists of 30,001 entries distributed across 8 columns, representing both textual

posts and their associated metadata. Each row corresponds to a unique post identified by a distinct ID. The dataset

2

includes a “Labels Set” column that categorizes posts into “fake” and “non-fake” classes. Additional engagement

“«

»

»

«

metrics such as replies, retweets, and favorites are provided, along with sentiment markers like Positive_Comments

13

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

and Negative_Comments. These features make the dataset suitable for tasks such as sentiment analysis, social media
trend analysis, and fake news detection.

To ensure the text was suitable for machine learning models, a preprocessing function was implemented using
the Natural Language Toolkit (NLTK). This process involved tokenizing the text, removing punctuation and special
characters, and eliminating stopwords. Although the raw data initially contained a small number of non-English
tokens and encoding artifacts, these were systematically removed during preprocessing so that only English text was
retained. The final cleaned dataset is entirely English, ensuring compatibility with the models and compliance with

the journal’s requirements.

Unique 1D Replies

2AG0 1

w026

2 “~w plxsy nco 0o 2200 o ® Zéﬂ %0 200
2, Favortes

2500 200 T T

200

won

W6 -

6

P — |
an T

%o
L) " ‘
o %) 0 1500 w000 3500 0 2000 200 @ 5000
Posilive_torments Negzative_comments
asoc [
[¢+
20001 %
| & = il B = - h h =il
|
) 460 -
et
%01 } ! I | e 1 |
o | o _L |

2 o -] @ 0 1o 1 a N an w 10 %0 1w wn on

Figure 10. Presents histograms depicting the distribution of different engagement metrics in the dataset.

2.2. Applying TF-IDF Word Embeddings

Figure 10 shows histograms that illustrate how the dataset is distributed across several engagement indicators.
A uniform distribution of Unique IDs is observed in the first figure (top-left), indicating an equal representation of
entries. Responses, retweets, likes, positive comments, and negative comments all exhibit highly skewed distributions
in the other histograms, with most values clustered around zero and a small number of outliers. It appears that most
postings do not receive much engagement, but a few garner significant attention, resulting in a long-tail distribution.
These findings are essential for machine learning tasks such as feature scaling, model selection, and engagement

prediction.

14
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Distribution of fake and real news

Real news

Fake news

Figure 11. The distribution of fake and real news in the dataset.

Figure 11 shows how the dataset distributes authentic and fraudulent news. An analysis of the news reveals that

64.4% of it is authentic and 385.6% is fraudulent. This suggests that the dataset is skewed, with more instances of

actual news than false news. Because of this disparity, machine learning models may be biased in favor of the dominant

group, which is problematic. To address this, methods such as resampling, weighted loss functions, or synthetic data

generation (like SMOTE) can be considered to improve the model's ability to recognize false news.

Average Engagement by Day of the Week

Average Engagement by Month

100 4

a0 B0
= 60 Y 60
3 2 5 =
S w— Raplies S — Replies

—— Retweets —— Ratweats

% —— Favofites E — Favorites
I an Z

204

20

o L 2 4 3 L

3
Day of the Week

2 L] [a w0 1z

Figure 12. Analyzing average engagement trends.

Two line charts, one for each day of the week and one for each month, examine average engagement trends

(Figure 12). The several plots display the changing engagement levels over time through the tracking of responses,

retweets, and likes. Likes (green line), retweets (orange line), and responses (blue line) are the three most engaging

metrics in both graphs. There appears to be a small variation in involvement, with a high around mid-week, according

to the day-of-week chart. The monthly data shows that there are periodic changes, with a decline in involvement

observed in certain months. These findings are useful for determining the best times to post in order to get the most

engagement from your audience.

© 2026 Conscientia Beam. All Rights Reserved.

15

Review of Computer Engineering Research, 2026, 13(1): 1-35

104 — Daily Sentiment

0.8

06

0.4 4

024

Average Sentiment

0.0 4

2020 2030 2040 2050 2060 2070 2080 2090 2100
Date

Figure 18. Daily sentiment trends over time.

Figure 138 demonstrates long-term patterns in daily sentiment, with dates represented on the x-axis and average
sentiment scores shown on the y-axis. At different time intervals, there are noticeable differences in sentiment, which
might be favorable or negative. Positive involvement is shown by periods of high sentiment, whereas spikes in
negative sentiment are indicated by dramatic drops. Possible date-related abnormalities or data formatting errors
might be the cause of the timeline's irregularity, which includes dates that are impossibly distant in the future, such

as 2040-2100. Sentiment trends, possible outliers, and engagement patterns may be better seen with this graphic.

— Monthly Sentiment
0.10

0.08 1

0.06

0.04

Average Sentiment

0.02

0.00

-0.02

2020 2030 2040 2050 2060 2070 2080 2090 2100
Date

Figure 14. Monthly sentiment trends over time.

Figure 14 is a time series depiction of monthly sentiment patterns; the x-axis displays the date, and the y-axis
shows the average sentiment score. Observable peaks and valleys in the sentiment indicate periods of high and low
sentiment activity, respectively. Irregular patterns, presumably caused by data errors or outliers, are indicated by a
notable peak around 2060 and different oscillations. There may have been formatting mistakes in the data if
timestamps with future dates (e.g., 2030-2100) are present. Anomalies, engagement trends, and long-term changes

in sentiment can be better understood using this approach.

16
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Q

/’

Y ,mz \ \ a \
201 o %a '1‘;\‘;/ : a a1é‘ ~é‘
\ 23
> ‘©. 3 s 2 d.’d
500 - 3 3‘_ /4] o

5 e
Q)

5 2 Al G od

1000 A .- a?é a’;] amau
1250 Y x5 3 N Y @ a Y4_J.n 3
1500 - [qo) a ma =~ sa %33/” - ‘,(;
36y JA A
v rU - K : +~ 8Y . aY AT
,>'4 ay %3 =13 %a s N I
0 sso 100 1500 2000 2500

Figure 15. Word cloud visualization appears to contain garbled text.

Figure 15 indicates that there seems to be an encoding problem in the dataset because the word cloud
visualization includes garbled text and special characters (such as a, %, 0, ae, and https). When processing non-English
text, particularly if the dataset contains Hindi or other Indic languages, this is most often the result of erroneous
character encoding. Symbols, accented letters, and bits of URLs predominate over meaningful words in the image.

To address this, ensure the word cloud accurately represents the dataset's common terms by applying the correct text
decoding (e.g., UTF-8).

3000
Fake - 688 1448
2500
B
© 2000
[1}]
o
=
- 1500
Real - 445
- 1000
: 500
Fake Real

Predicted label

Figure 16. Confusion matrix for Naive Bayes.

2.8. Fast Text Word Embeddings

Figure 16, which is the Naive Bayes confusion matrix, assesses how well the model distinguishes between true

and fraudulent news. The four essential values that make up the matrix are: 688 instances of genuine news being

17
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

accurately categorized as fake, 3,420 instances of real news being correctly labeled as real, 1,485 instances of real
news being misclassified as fake, and 1,448 instances of false positives occurring. Naive Bayes' assumption of feature
independence may have constraints or the dataset may be imbalanced, but either way, the large frequency of false
positives suggests that the model has trouble accurately identifying bogus news. Model improvement, such as feature
engineering, hyperparameter tuning, or ensemble approaches, may be necessary to increase the accuracy of false news

detection, despite its good performance in recognizing actual news.

Confusion matrix for random forest

3500

Fake - 1361 775

2500

- 2000

True label

- 1500

Real 262
r 1000

500

Fake Real
Predicted label

Figure 17. Confusion matrix for random forest classifier.

The Random Forest classifier's capacity to distinguish between true and fraudulent news is assessed in Figure
17, which is the confusion matrix. With a success rate of 1361 for false news and 3603 for actual news, the model has
proven itself to be an accurate classifier. A total of 775 false positives and 262 false negatives occur when it incorrectly
identifies actual news stories as fake. This model outperforms Naive Bayes in differentiating between fake and true
news, as seen by the reduced rates of false positives and false negatives. When it comes to detecting false news, the
Random Forest classifier is the best option because of its higher precision and recall. Additional optimization, such as
hyperparameter tuning, feature selection, or ensemble approaches, may be necessary to improve its performance, as

shown by the remaining misclassifications.

Confusion matrix for SVM

3500

3000
Fake 1097 1039
2500
]
=]
~ 2000
]
=]
=
1500
Real 175 L 1000
500
Fake Real

Predicted label
Figure 18. Confusion matrix for SVM classifier.

18
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

The SVM classifier's (Figure 18) confusion matrix displays its accuracy in distinguishing between true and
fraudulent news. The algorithm has a success rate of 1,097 in identifying false news stories and 3,690 in identifying
legitimate news stories. It does, however, mistake 1.75 pieces of legitimate news for false positives and 10.39 pieces
of fraudulent news for actual ones. With a lower false negative rate, SVM is better at detecting actual news stories
than Random Forest. Having a greater false positive rate (1,089 misclassified bogus news), it appears to have difficulty
properly differentiating between fake and authentic news. Further optimization, feature engineering, or different
kernels may be necessary to increase the SVM's accuracy in detecting false news, despite its outstanding performance

in accurately forecasting actual news.

Confusion matrix for LSTM

3500

: 3000
Fake - 1865 271

2500

2000

True label

1500

Real - 170 | 1000

500

Fake Real

Predicted label
Figure 19. Confusion matrix for the LSTM model.

Figure 19 shows the LSTM model's confusion matrix, which illustrates how effectively it can distinguish between
true and fraudulent news. Overall, the model demonstrates a high level of accuracy, correctly identifying 1865
instances of fake news (true positives) and 3695 instances of genuine news (true negatives). Compared to earlier
models such as Naive Bayes, SVM, and Random Forest, it significantly reduces the number of false positives and false
negatives, mistaking 271 instances of fake news for genuine and 170 instances of genuine news for fake. When it
comes to detecting false news, the LSTM model is the most reliable option because it has the lowest false positive
and false negative rates compared to the other classifiers. Although hyperparameter tuning, additional training data,
or attention mechanisms can further improve its accuracy, its ability to capture textual contextual linkages and

temporal patterns is a major factor contributing to its high accuracy.

Table 3. Presents the performance of three classifiers.

Metric Naive Bayes Random Forest SVM LSTM
Accuracy 0.685 0.827 0.798 0.927
Precision 0.703 0.823 0.780 0.932
Recall 0.885 0.932 0.955 0.956
F1 Score 0.783 0.874 0.859 0.944
ROC AUC 0.603 0.785 0.734 0.957
Log Loss 11.370 6.229 7.292 0.207
19

© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Table 3, which is part of the Model Comparison, shows how three classifiers Naive Bayes, Random Forest, and
SVM performed across various assessment criteria. The best overall performance is indicated by Random Forest's
highest accuracy (82.72%), followed by SVM (79.77%), and Naive Bayes (68.46%). With a precision of 0.822979,
Random Forest achieves better results than SVM (0.780292) and Naive Bayes (0.702547), indicating a reduction in
false positives. Although its accuracy is marginally lower than that of other methods, support vector machines (SVMs)
have the best recall (0.954722), making them the most effective at accurately detecting genuine news. When it comes
to balancing accuracy and recall, Random Forest has the highest F1-score (0.874196), whereas SVM (0.858739) and
Naive Bayes (0.783236) have lower scores. The top three models for differentiating between fake and real news,
according to ROC AUC values, are Random Forest (0.784692), SVM (0.734149), and Naive Bayes (0.603481). The
most confident predictions are produced by Random Forest (6.228507) according to the log loss values, whereas the
most uncertain forecasts are made by Naive Bayes (11.869878). In terms of overall performance, Random Forest is

the most suitable model for identifying false news, SVM excels in recall, and Naive Bayes is the least successful model.

Model comparison heatmap

w
Q
z
g - 0.72 0.70 0.82 0.66 0.61 0.40 0.9
>
]
2
-0.8
@
g
a9 o
2g- 076 0.73 084 0.71 0.53 047 -07
e o
=3
c
o
«
-0.6
é - 0.75 0.73 0.84 0.67 0.53 0.46 0.5
| ' g | ' " g 0.4
accuracy precision recall fl roc_auc log_loss mcc
Metrics

Figure 20. Model comparison heatmap visualizes.

4.4. Word2Vec Word Embeddings

In Figure 20, the Model Comparison Heatmap, different colors indicate varying degrees of performance,
illustrating how Naive Bayes, Random Forest, and SVM perform across multiple assessment measures. All models
exhibit a high recall (around 1.00), indicating they are highly effective at correctly classifying positive cases. With an
F1-score of 0.84-and an accuracy of 0.76, Random Forest is the most balanced model. Naive Bayes has slightly lower
precision (0.70), while both Random Forest and SVM have a precision of 0.73, suggesting they are better at reducing
false positives. Regarding discriminatory power, Random Forest has the highest ROC AUC (0.71), whereas Naive
Bayes has the lowest (0.66). The most confident predictions are made by Random Forest and SVM, which have the
lowest log loss (0.53), in contrast to Naive Bayes, which has a higher log loss (0.61), indicating greater uncertainty.
The resilience of Random Forest is further supported by its highest Matthews Correlation Coefficient (MCC) of 0.47.
Naive Bayes performs poorly in most categories except recall, while Random Forest and SVM emerge as the top-

performing models overall.

20
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Confusion matrix for Naive Bayes

Fake - 485 1651

True label

Real 4 2

Fake Real
Predicted label

Figure 21. Confusion matrix for the Naive Bayes classifier.

The accuracy of the Naive Bayes classifier in differentiating between false and actual news is assessed using the

3500

3000

2500

2000

- 1500

- 1000

- 500

confusion matrix in Figure 21. Out of 8,863 occurrences of actual news, the model accurately identifies 485 as false

positives. Unfortunately, it mistakenly classifies 1,651 pieces of bogus news as genuine, indicating a significant

percentage of false positives. At the same time, only two examples of actual news were incorrectly labeled as fake,

demonstrating that Naive Bayes has a strong bias towards correctly predicting real news but faces considerable

challenges in detecting fake news. This reveals a discrepancy in the classification performance of Naive Bayes, as it

achieves good recall for genuine news but low precision for false news. To improve the effectiveness of fake news

detection and reduce false positives, the model could benefit from better feature selection, adjusted class priors, or

more advanced methods such as ensemble learning.

Confusion Matrix for Random Forest

Fake 729 1407

True label

Real - 46

T

Fake Real
Predicted label
Figure 22. Confusion matrix for the Random Forest classifier.

© 2026 Conscientia Beam. All Rights Reserved.

3500

3000

2500

2000

1500

I 1000

500

21

Review of Computer Engineering Research, 2026, 13(1): 1-35

The performance of the Random Forest classifier in distinguishing between authentic and fraudulent news is
evaluated in Figure 22, which presents the confusion matrix. The classifier demonstrates high accuracy, correctly
identifying 729 cases of false news and 3819 cases of legitimate news. Conversely, it produces 1407 false positives and
46 false negatives, indicating that it incorrectly classifies legitimate news as false. Random Forest significantly
improves the detection of actual news stories by reducing false negatives compared to Naive Bayes. However, there
remains a substantial number of false positives, where fake news is mistakenly classified as legitimate. Although
Random Forest outperforms Naive Bayes in terms of balance and robustness, further optimization through

hyperparameter tuning, feature engineering, or ensemble methods could enhance its ability to distinguish false news

more effectively.

Confusion Matrix for SVM

3500

3000
Fake - 706 1430

2500

2000

True label

- 1500
Real - 43 - 1000

-500

Fake Real
Predicted label

Figure 23. Confusion matrix for the SVM classifier to differentiate between true and fraudulent news.

Figure 23 shows the SVM classifier's confusion matrix, which measures how well it differentiates between true
and fraudulent news. The model demonstrates strong classification skills, accurately identifying 706 instances of fake
news (true positives) and 3,822 cases of legitimate news (true negatives). However, it incorrectly classifies 1,430
instances of fake news as genuine (false positives) and 43 instances of true news as fake (false negatives). With a
slightly higher false positive rate than Random Forest, SVM has a more difficult time incorrectly labeling misleading
news as genuine. Conversely, it reliably detects actual news due to its low false negative rate. Enhancements such as
feature selection, kernel improvements, or incorporating additional textual representations like word embeddings

(Word2Vec, FastText) could improve SVM's effectiveness in detecting fake news.

22
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Confusion Matrix: Naive Bayes

3500

3000
Fake - 1610 526

2500

2000

True label

- 1500

Real - 275
- 1000

-500

Fake Real
Predicted label

Figure 24. Confusion matrix for the Naive Bayes classifier distinguishing true and fraudulent news.

5. RESULT ANALYSIS
5.1. TF-IDF Word Embeddings

Figure 24 shows the Naive Bayes classifier's confusion matrix, which assesses how well it distinguishes between
true and fraudulent news. Thanks to its excellent categorization abilities, the model has identified 1,610 cases of false
news (true positives) and 3,590 cases of actual news (true negatives). It does, however, mistake 526 cases of false
positives for actual news and 275 cases of real news for fake news. With fewer false positives, our model shows better
accuracy in identifying fake news compared to earlier Naive Bayes findings. Nevertheless, there seems to be some
issue with reliably detecting true news, as indicated by the 275 false negatives. Naive Bayes appears to be effective at

detecting false news, but it may benefit from further text preprocessing, feature selection, or ensemble approaches.

Receiver Operating Characteristic: Naive Bayes

True Positive Rate

e = ROC curve (area = 0.92)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 25. Receiver operating characteristic (ROC) curve.

23
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

In Figure 25, the Receiver Operating Characteristic (ROC) curve of the Naive Bayes classifier is shown. This
curve illustrates the ability of the classifier to distinguish between genuine and counterfeit news. The model's capacity
to differentiate across classes is demonstrated by plotting the True Positive Rate (TPR) on the y-axis against the
False Positive Rate (FPR) on the x-axis. Since the curve is significantly above the diagonal (random guess line), the
classification performance is considered satisfactory. The high discriminative power of the algorithm is further
evidenced by the Area Under the Curve (AUC) value of 0.92. A larger AUC, closer to 1, indicates a higher level of
discrimination. Despite this strong performance, there remains potential for improvement through feature
engineering, hyperparameter tuning, or ensemble techniques, which could enhance accuracy and reduce the number

of false positives produced.

Confusion matrix: Random forest

3500

3000
Fake - 1831 305

2500

-2000

True label

- 1500

. 233
Real - 1000

- 500

Fake Real
Predicted label

Figure 26. Confusion matrix for the random forest classifier.

The Random Forest classifier's accuracy in distinguishing between false and true news is assessed in Figure 26,
which shows the confusion matrix. The model demonstrates impressive classification capabilities, correctly
identifying 1831 cases of false news (True positives) and 3632 cases of authentic news (True negatives).
Unfortunately, it incorrectly classifies 305 instances of fake news as genuine (False positives) and 233 instances of
actual news as fake (False negatives). Random Forest achieves a more balanced classification performance by
substantially reducing false positives and false negatives compared to Naive Bayes. With its high accuracy and recall
and low misclassification rate, Random Forest appears to be a robust model for detecting false news. Further

reduction of classification errors may be achieved through hyperparameter tuning, additional feature selection, or

ensemble approaches.

24
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Receiver operating characteristic: Random forest

”
~
”
”
-
”
”
”
”
”
”
”
3 7
e #¢
”
2 #”
= ’
L) -
g e
] ’
=3 F
=
= ROC curve (area = 0.96)
0.4 0.6 0.8 1.0

False Positive Rate

Figure 27. Receiver operating characteristic (ROC).

Figure 27 represents the Receiver Operating Characteristic (ROC) curve of the Random Forest classifier. The
curve shows how well our classifier distinguishes between actual and fake news. To demonstrate that the model can
differentiate between classes, we plot the True Positive Rate (TPR) on the y-axis against the False Positive Rate
(FPR) on the x-axis. The steep curve (far away from the diagonal, also known as a random guess line) indicates very
high classification performance. After running the Random Forest model, we obtained an Area Under the Curve
(AUC) value of 0.96, which significantly improves upon the Naive Bayes AUC value of 0.92. The Random Forest
model also shows a notable difference, indicating good discriminating ability. With low levels of false positives and
negatives, and a record area under the curve (AUC), it can be concluded that the model effectively differentiates
between fake news and genuine content. Approaches such as hyperparameter tuning, additional feature selection, or

ensemble learning can be employed to develop models with better performance and fewer misclassifications.

Confusion Matrix: SVM

3500

3000
Faka - 1803 333

2500

- 2000

True label

- 1500

Real 191 - 1000

- 500

T
Fake Real
Predicted label

Figure 28. Confusion matrix for the SVM (Support Vector Machine) classifier.

25
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

The SVM classifier's effectiveness in distinguishing between true and fraudulent news is assessed in Figure 28,
which is the confusion matrix. The model demonstrates strong classification skills, accurately classifying 1803
instances of fake news (true positives) and 3674 instances of legitimate news (true negatives). Conversely, it
incorrectly identifies 191 instances of genuine news as fake and 833 cases of fake news as genuine. In terms of
detecting fake news, SVM performs slightly better than Random Forest; however, it misclassifies a few more instances
of actual news and has a marginally higher number of false negatives. Overall, SVM is an effective model for detecting
false news because it balances recall and accuracy well. Further improvements in classification performance can be

achieved through kernel optimization, feature selection, and hyperparameter tuning.

Receiver Operating Characteristic: SVM

1.0 A -
F
F 3
7
F
7’
fl’
0.8 - "4
e
&
e
g 47
& Pk
o 06 - P
F
2 L
= B
=]
t b
= 0.4 ”
= 7
&
”
&
Fa
&
0.2 1 e
»
&
" #
L = ROC curve (area = 0.95)
0.0 | T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 29. Receiver operating characteristic (ROC) curve for the SVM (Support vector machine).

The effectiveness of the Support Vector Machine (SVM) classifier in distinguishing between true and fraudulent
news is demonstrated by its Receiver Operating Characteristic (ROC) curve in Figure 29. A steep curve, positioned
above the diagonal (random chance line), indicates strong classification ability, as shown here against the False
Positive Rate (FPR). With an Area Under the Curve (AUC) of 0.95, SVM exhibits superior discriminative capabilities,
comparable to Random Forest (AUC = 0.96) and exceeding Naive Bayes (AUC = 0.92). The low number of false
positives and negatives suggests that SVM is quite effective at classifying the two groups. However, hyperparameter
tuning, kernel selection, or advanced feature extraction techniques could further reduce misclassification rates,

potentially enhancing performance.

26
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Model accuracy

— Train
0964 validation

0.95 1

0.24

Accuracy
=
o
7%}
L

0.92 4

0.91 1

0.90 1

0.89

T T T T T T T
0.00 025 0.50 0.75 1.60 125 1.50 1.75 2.00
Epoch

Figure 30. Model Accuracy displays the training and validation accuracy over epochs.

The accuracy of the training and validation throughout epochs is shown in Figure 380, which is titled "Model
Accuracy." The training accuracy, represented by the blue line, starts at approximately 89% and rapidly increases to
over 96% within less than two epochs, indicating a high rate of learning. The orange line illustrates the validation
accuracy, which begins at around 94% and gradually decreases until it stabilizes at a similar level. For the training
data, the model performs quite well; however, its performance on validation data does not significantly improve, if at
all. This discrepancy between training and validation accuracy may suggest overfitting, where the model learns the
training data too closely but struggles to generalize to new data. Several methods can be employed to enhance
generalizability, including regularization techniques such as L1 and L2, dropout, early stopping, and increasing the

amount of training data.

Model loss

= Train
127 — vlidation

Lo

08

0.6 1

0.4+

T T T T : . T -
Q.00 0.25 0.50 073 100 125 150 175 2.00
Epoch

Figure 31. Model Loss displays the training and validation accuracy over epochs.

The loss that occurs during training and validation at various epochs is shown in Figure 31 of the Model Loss.
The training loss, represented by the blue line, starts at approximately 1.2 and decreases significantly as the model

learns, indicating successful optimization. The validation loss, shown by the orange line, also decreases consistently,

27
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

although at a slower rate. By the time the second epoch is reached, validation loss remains considerably higher than
training loss. Both losses tend to converge over time. The fact that the gap between training loss and validation loss
is shrinking but not entirely closing suggests that the model may still exhibit some overfitting, despite effective
learning. To improve generalization and prevent overfitting, methodologies such as data augmentation, early

stopping, batch normalization, and dropout can be employed.

Comparison of Model Performance Metrics

0.8

0.6

Scone

0.4 4

0.2 4

accuracy
precision
recall
fl
moC_auc
log_loss
mee

0.0 -

Naive Bayes Random Forest
Madel

Figure 32. Model performance comparison for three different ML models.

Figure 32, also known as the Model Performance Comparison Bar Chart, displays the performance metrics for
three different machine learning models. These models include Naive Bayes, Random Forest, and SVM (Support
Vector Machine). Recall, accuracy, precision, I'1-score, area under the curve (ROC), log loss, and Matthews
correlation coefficient (MCC) are some of the measurements shown.

Naive Bayes has a lower accuracy of 0.87 and a relatively strong recall of 0.93, suggesting that it tends to identify
more cases as positive while incurring some false positives. Additionally, its lower confidence in its predictions is
indicated by its larger log loss (0.33) compared to other models.

With an accuracy of 0.92, a precision of 0.94, a recall of 0.96, and an F1-score of 0.93, the Random Forest model
outperforms all other models. This makes it the best-balanced model when considering recall and precision. Better
prediction confidence is demonstrated by its smaller log loss of 0.28.

SVM achieves results comparable to Random Forest, with a 0.93 F1-score, thanks to its strong recall (0.93) and
accuracy (0.95). It is quite dependable since its MCC is 0.81, which indicates a high degree of correlation with real

class labels.

28
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

LSTM Model Training & Validation Loss

—8— Train
0.30 9 —&— “alidation

0.28

0.26

Loss

0.24

022

0.20

0.18 1

Epoch
Figure 33. LSTM model training & validation loss.

5.2. Fast Text Word Embeddings

Figure 33 illustrates the LSTM Model Training & Validation Loss, depicting the evolution of the model's loss
across epochs for both validation and training datasets. The training loss, represented by the blue line, begins at
approximately 0.30 and steadily decreases as the model learns from the training data. The validation loss, shown by
the orange line, also decreases initially but begins to fluctuate around the sixth epoch, indicating the model may be
approaching its optimal learning capacity. The relatively small gap between training and validation losses, despite
both trending downward, suggests minimal overfitting and good generalization to unseen data. However, slight
increases in validation loss in later epochs could be early signs of overfitting. To prevent the model from memorizing
noise rather than learning meaningful patterns, techniques such as early stopping or dropout regularization can be

employed to halt training before deterioration occurs.

LSTM Model Training & Validation Accuracy

0.94
=& Train A

#— \alidation

0934

0.92 4

0.91 4

Accuracy

0.89 4

T T T T T
4] Z 4 B 8
Epoch

Figure 34. LSTM model training & validation accuracy.

Figure 34 displays the LSTM Model Training & Validation Accuracy, which illustrates the model's accuracy
improvement for both the training and validation datasets throughout the course of the training epochs. The model
is learning successfully, as the blue line shows the training accuracy, which begins at about 88% and gradually rises

to more than 93%. The validation accuracy, shown by the orange line, increases dramatically at the beginning and

29
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

stays somewhat higher than the training accuracy until about epoch 7, when the two lines converge. The model seems
to have good generalizability to new data, despite a small decrease in validation accuracy at the last epoch that might
be due to overfitting. The robust generalization with minimal performance deterioration is indicated by the tight
relationship between the validation accuracy and the training accuracy. Stabilizing accuracy and preventing
overfitting in future rounds might be achieved using strategies such as early stopping, fine-tuning learning rates, or

adding dropout layers, which could further enhance performance.

m— Random Forest
-_— SVM

Accuracy Precision Recall F1 Score
Metrics

Log Loss

Figure 35. Comparison of model performance metrics.

A comparison of the performance metrics used to assess Naive Bayes, Random Forest, and Support Vector
Machine (SVM) models is shown in Figure 85. Accuracy, precision, recall, F'1 score, ROC area under the curve, and
log loss are some of these measurements.

The greatest overall performance was achieved by Random Forest (orange), which had the maximum recall
(0.95), accuracy (0.83), and a good F'1 score (0.87). Additionally, the ROC AUC is strong at 0.78, suggesting that it
effectively distinguishes between groups.

SVM (green) follows closely after, with a high recall of 0.93 and an F'1 score of 0.86; it performs slightly worse
in accuracy and precision but still demonstrates excellent performance.

The blue Naive Bayes model is not very strong in most measures, including accuracy (0.68), precision (0.70), and
F1 score (0.78). However, it has a decent recall (0.88), which means it usually identifies positive cases correctly but

makes many mistakes.

30
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

LSTM Model Performance Metrics

1.0
0.9560 09570
0.9265 0.9317 0.9437

0.8

0.6
2
]
i

0.4

0.2 7

0.0 .

Accuracy Precision Recall F1 Score ROC ALC Log Loss
Metrics

Figure 36. LSTM model performance metrics.

The assessment scores of an LSTM model across key performance measures are shown in Figure 36 of the LSTM
Model Performance Metrics. These indicators include accuracy (0.9265), precision (0.9317), recall (0.9560), F1 score
(0.9487), ROC AUC (0.9570), and log loss (0.2074). The model's high recall indicates that it successfully recognizes
positive examples, while its high accuracy and precision demonstrate strong predictive power. The F1 score confirms
that recall and accuracy are balanced. An excellent class separation is indicated by a high ROC AUC of 0.9570, and
the low log loss of 0.2074 reflects confidence in probability predictions. Overall, the LSTM model consistently

outperforms other models in classification tasks.

Table 4. Model Comparison presents the performance metrics of three classification models.

Metric Naive Bayes Random Forest SVM
Accuracy 0.685 0.827 0.798
Precision 0.703 0.823 0.780
Recall 0.885 0.932 0.955
F1 Score 0.783 0.874 0.859
ROC AUC 0.603 0.785 0.734
Log Loss 11.870 6.229 7.292

The three classification models Naive Bayes, Random Forest, and SVM have their performance metrics shown
in Model Comparison Table 4. All metrics measured are at their highest with Random Forest, which achieves 0.8272,
precision 0.8229, recall 0.9322, F'1 score 0.8742, and ROC AUC 0.7847. Following closely is SVM, which shows good
recall performance with an F1 score of 0.8587, precision of 0.7803, recall of 0.9547, and accuracy of 0.7977. In
comparison to Random Forest (6.23) and SVM (7.29), Naive Bayes has a greater log loss of 11.37 due to its lower
accuracy of 0.6846 and precision of 0.7025, despite having the greatest recall of 0.8849. When it comes to minimizing

errors and improving forecast accuracy, Random Forest is the most well-rounded model.

31
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Model loss
—&— Train
—&— \alidation
0.6524
0.6522 4
0.6520 4
i 0.6518 4
5
0.6516
0.6514 4
/0‘5 2 é
Y 4
0.6512 - N
5
ods “Bgs—O8
0'6510 B T T T T T
o 2 4 6 8

Epoch
Figure 37. The training and validation loss across multiple epochs.

5.8. Word2Vec Word Embeddings

The Model Loss is shown in Figure 87. This figure illustrates the loss that occurs during training and validation
throughout a large number of epochs. The initial training loss is greater than the subsequent losses, but it drops
significantly in the first few epochs before reaching a plateau, which indicates that the model is gaining knowledge
from the data. The validation loss is relatively stable and remains approximately at 0.65, suggesting that the model
does not seem to be making much improvement on data that has not yet been seen. The small disparity between the
training and validation losses indicates that the model is not overfitting; however, it may be experiencing difficulties
in understanding complex patterns. Possible explanations include a shortage of training data, a slow learning rate, or

the need for more robust features.

Comparison of Moedel Performance Metrics using Word2Vec Embeddings

0.8 4

0.6

Score

0.4 4

021 accuracy

precision
recall

f1
ToC_auc
log_loss
mcc

oon-

Naive Bayes Random Forest SV
Model

Figure 38. Model performance comparison for Word2Vec embeddings.

32
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

Figure 38 shows the results of comparing the performance of several classification models utilizing Word2Vec
embeddings. These models include Naive Bayes, Random Forest, SVM, and LSTM. The models were evaluated using
different performance measures. With the best accuracy (0.98), precision (0.91), recall (0.97), F1-score (0.94), and
ROC AUC (0.94), as well as a significantly lower log loss (0.25), the LSTM model outperforms all other models.
Similar to LSTM, Random Forest and SVM perform well with recall values above 0.90, although they are not quite
as accurate and have lower F1-scores. When it comes to capturing text-based patterns using Word2Vec embeddings,
Naive Bayes performs the poorest, with the lowest accuracy (0.78), precision (0.69), and F1-score (0.80). It appears
that LSTM maintains the greatest balance across all assessment parameters, as it has the highest Matthews
Correlation Coefticient (MCC).

5.4. Critical Discussion of Model Behavior

The quantitative results confirm that the LSTM model works better, but the training and validation curves (Figs
30-31) show that it might be overfitting. The training accuracy, on the other hand, increases rapidly and remains
much higher than the validation accuracy. The validation loss, in turn, does not converge at the same rate as the
training loss. This difference in results indicates that the LSTM model might be memorizing patterns from the
training data instead of applying what it has learned to new samples. This behavior is not unusual in sequential models
used on small or unbalanced datasets. Future enhancements may include dropout layers, early stopping, L2
regularization, or dataset augmentation to mitigate the generalization gap and improve robustness.

The comparative results across models demand more profound interpretation beyond mere accuracy and F1-
scores. Naive Bayes consistently performed poorly because it assumes independence, which doesn't account for
contextual dependencies in language structures. This is particularly important for detecting fake news, where small
semantic cues can make a big difference in class separation. SVM had a high recall rate but a lower precision rate.
This is because it is very difficult to tell the difference between noisy and high-dimensional text when linear kernels
are used. Random Forest gave balanced results because ensemble averaging lowers variance, but it doesn't have the
sequential learning ability needed to pick up on context-dependent features in complex texts. The LSTM model, on
the other hand, did better than all the other models because it could learn long-range dependencies and how meaning
flows through sentences. But the better performance of LSTM comes at a cost, as shown by the overfitting patterns

that were seen. This shows that careful model regularization is still needed.

6. CONCLUSION

This research conducted an extensive comparative study of sentiment analysis models utilizing TF-IDF,
FastText, and Word2Vec embeddings, combined with four different classifiers: Naive Bayes, Random Forest, SVM,
and LSTM. The LSTM model outperformed all others, achieving an accuracy of 92.65%, an F1-score of 94.37%, a
precision of 93.17%, a recall of 95.60%, and a ROC-AUC score of 95.70%. Notably, the LSTM model with Word2Vec
embeddings performed exceptionally well, even in the Log Loss variant, which achieved the best score of 0.2074.
Among traditional classifiers, Random Forest was the most effective, followed by SVM, while Naive Bayes lagged
due to its limited capacity to handle complex data representations. The study emphasizes the importance of deep
learning and advanced word embedding techniques in enhancing sentiment classification accuracy. Additionally, the
robustness and generalization capabilities of the models were validated through detailed analyses using confusion
matrices, ROC curves, and training-validation plots. This research offers practical guidelines for selecting suitable
model-embedding combinations for real-world sentiment analysis applications. Future work will explore hybrid
models, ensemble methods, and attention mechanisms to further improve text classification tasks.

However, the work is not without limitations. The dataset used in this study exhibited a degree of class imbalance,
with a higher proportion of real news compared to fake news, which may have influenced model performance and

generalizability. Additionally, the raw text data initially contained non-English tokens and encoding artifacts, which

33
© 2026 Conscientia Beam. All Rights Reserved.

Review of Computer Engineering Research, 2026, 13(1): 1-35

required preprocessing and removal to ensure consistency. Addressing these limitations in future studies through

balanced datasets, multilingual support, and more sophisticated data-cleaning pipelines will help further strengthen

the robustness and applicability of sentiment analysis models.

Funding: This study received no specific financial support.

Institutional Review Board Statement: Not applicable.

Transparency: The authors state that the manuscript is honest, truthful, and transparent, that no key aspects
of the investigation have been omitted, and that any differences from the study as planned have been clarified.
This study followed all writing ethics.

Competing Interests: The authors declare that they have no competing interests.

Authors’ Contributions: All authors contributed equally to the conception and design of the study. All
authors have read and agreed to the published version of the manuscript.

Disclosure of AI Use: The author(s) used OpenAl's ChatGPT to edit and refine the wording of the
Introduction. All outputs were reviewed and verified by the authors.

REFERENCES

0]

2]

[s]

4]

5]

[6]

7]

(8]

[9]

[10]

[11]

[12]

[1s]

[14]

P. Akter et al., "Sentiment analysis of consumer feedback and its impact on business strategies by machine learning," The
American Journal of Applied Sciences, vol. 7, no. 01, pp. 6-16, 2025. https://doi.org/10.37547/tajas/Volume07Issue01-02
M. Simionescu, "Machine learning vs. econometric models to forecast inflation rate in Romania? The role of sentiment
analysis," Mathematics, vol. 18, no. 1, p. 168, 2025. https://doi.org/10.8390/math13010168

R. Alhejaili, Machine learning approaches for sentiment analysis on social media. In AI-Driven: Social Media Analytics and
Cybersecurity. Cham, Switzerland: Springer Nature, 2025.

M. A. S. Saleh and M. AlShafeey, "Examining the synergies between industry 4.0 and sustainability dimensions using
text mining, sentiment analysis, and association rules," Sustainable Futures, vol. 9, p. 100423, 2025.
https://doi.org/10.1016/].sftr.2024.100423

M. K. Anam et al., "Enhancing the performance of machine learning algorithm for intent sentiment analysis on village
fund topic," Journal of Applied Data Sciences, vol. 6, no. 2, pp. 1102-1115, 2025. https://doi.org/10.47738/jads.v6i2.637

A. Khan, "Improved multi-lingual sentiment analysis and recognition using deep learning," Journal of Information Science,
vol. 51, no. 1, pp. 284-291, 2023. https://doi.org/10.1177/01655515221137270

P. Devika and A. Milton, "Book recommendation using sentiment analysis and ensembling hybrid deep learning models,"
Knowledge and Information Systems, vol. 67, no. 2, pp. 1131-1168, 2025. https://doi.org/10.1007/510115-024-02250-z

J. Singh, G. Singh, and R. Singh, "Optimization of sentiment analysis using machine learning classifiers," Human-centric
Computing and Information Sciences, vol. 7, no. 1, p. 82, 2017. https://doi.org/10.1186/s18673-017-0116-3

R. Singh and R. Singh, "Applications of sentiment analysis and machine learning techniques in disease outbreak
prediction—A review," Materials Today: Proceedings, vol. 81, pp- 1006-1011, 2023.
https://doi.org/10.1016/).matpr.2021.04.356

J. Chandra and A. C. Mondal, "Studies of sentiment analysis for stock market prediction using machine learning: A
survey towards new research direction," Scholars Journal of Engineering and Technology, vol. 18, no. 1, pp. 56-65, 2025.
https://doi.org/10.36347/sjet.2025.v18i01.007

M. Kumar, L. Khan, and H.-T. Chang, "Evolving techniques in sentiment analysis: A comprehensive review," PeerJ
Computer Science, vol. 11, p. €2592, 2025. https://doi.org/10.7717/peerj-cs.2592

A. Albladi, M. Islam, and C. Seals, "Sentiment analysis of Twitter data using NLP models: A comprehensive review,"
IEEE Access, vol. 13, pp. 30444-30468, 2025. https://doi.org/10.1109/ACCESS.2025.3541494

G. P. Dubey, S. Upadhyay, and A. Giri, Machine learning techniques for sentimental analysis. In Information visualization for
intelligent systems. Cham, Switzerland: Springer, 2025.

R. Rawat, V. Mahor, S. Chirgaiya, R. N. Shaw, and A. Ghosh, Sentiment analysts at online social network for cyber-malicious
post reviews using machine learning techniques. In Computationally intelligent systems and their applications. Cham, Switzerland:

Springer, 2021.

3%

© 2026 Conscientia Beam. All Rights Reserved.

https://doi.org/10.37547/tajas/Volume07Issue01-02
https://doi.org/10.3390/math13010168
https://doi.org/10.1016/j.sftr.2024.100423
https://doi.org/10.47738/jads.v6i2.637
https://doi.org/10.1177/01655515221137270
https://doi.org/10.1007/s10115-024-02250-z
https://doi.org/10.1186/s13673-017-0116-3
https://doi.org/10.1016/j.matpr.2021.04.356
https://doi.org/10.36347/sjet.2025.v13i01.007
https://doi.org/10.7717/peerj-cs.2592
https://doi.org/10.1109/ACCESS.2025.3541494

Review of Computer Engineering Research, 2026, 13(1): 1-35

[15] D. M. Alsekait, H. Fathi, S. A. Ibrahim, A. Y. Shdefat, A. S. Alattas, and D. S. AbdEIminaam, "Sentiment analysis: A
machine learning utilisation for analyzing the sentiments of Facebook and Twitter posts," Intelligent Data Analysis: An
International Journal, vol. 29, no. 4, pp. 889-912, 2025. https://doi.org/10.1177/1088467X241301389

[16] A.S. Hashim et al., "Leveraging social media sentiment analysis for enhanced disaster management: A systematic review
and future research agenda," Journal of Systems Management Science, vol. 15, no. 4, pp. 170-191, 2025.

[17] D. Bino, V. Dhanalakshmi, and P. K. Udupi, Sentiment analysis and machine learning for tourism feedback data analysis: An
overview of trends, techniques, and applications. In AI technologies for personalized and sustainable tourism. Cham, Switzerland:
Springer, 2025.

[18] S. M. Ferdous, S. N. E. Newaz, S. B. S. Mugdha, and M. Uddin, "Sentiment analysis in the transformative era of machine
learning: A comprehensive review," Statistics, Optimization & Information Computing, vol. 13, no. 1, pp. 331-346, 2024.
https://doi.org/10.19189/50ic-2310-5070-2113

197 A. Amrullah, "Advanced sentiment analysis using deep learning: A comprehensive framework for high-accuracy and
interpretable models," Intellithings Journal, vol. 1, no. 1, pp. 21-31, 2025.

[20] J. V. Tembhurne, K. Lakhotia, and A. Agrawal, "Twitter sentiment analysis using ensemble of multi-channel model
based on machine learning and deep learning techniques," Knowledge and Information Systems, vol. 67, no. 2, pp. 104:5-
1071, 2025. https://doi.org/10.1007/510115-024-02256-7

[21] B. Bharadwaj, S. Nayak, and P. K. Panigrahi, "Sentiment analysis for identifying depression through social media texts
using machine learning technique," Big Data and Computing Visions, vol. 5, no. 2, pp. 102-118, 2025.
https://doi.org/10.22105/bdcv.2025.499270.1239

[22] R. Sharma, B. Singh, and A. Khamparia, Machine learning and generative AI techniques for sentiment analysis with applications.
In Generative artificial intelligence for biomedical and smart health informatics. Cham, Switzerland: Springer, 2025.

[23] C. G. Ozmen and S. Giindiiz, "Comparison of machine learning models for sentiment analysis of big Turkish web-based
data," Applied Sciences, vol. 15, no. 5, p. 2297, 2025. https://doi.org/10.3390/app15052297

[24] M. Ghonge, T. Kachare, M. Sinha, S. Kakade, S. Nigade, and S. Shinde, "Real time fake note detection using deep
convolutional neural network," presented at the 2022 Second International Conference on Computer Science,
Engineering and Applications (ICCSEA), Gunupur, India. https://doi.org/10.1109/ICCSEA54677.2022.9936084, 2022,
pp- 1-6.

[25] M. D. Devika, C. Sunitha, and A. Ganesh, "Sentiment analysis: A comparative study on different approaches," Procedia

Computer Science, vol. 87, pp. 44-49, 2016. https://doi.org/10.1016/].procs.2016.05.124

Views and opinions expressed in this article are the views and opinions of the author(s), Review of Computer Engineering Research shall not be responsible or
answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

35
© 2026 Conscientia Beam. All Rights Reserved.

https://doi.org/10.1177/1088467X241301389
https://doi.org/10.19139/soic-2310-5070-2113
https://doi.org/10.1007/s10115-024-02256-7
https://doi.org/10.22105/bdcv.2025.499270.1239
https://doi.org/10.3390/app15052297
https://doi.org/10.1109/ICCSEA54677.2022.9936084
https://doi.org/10.1016/j.procs.2016.05.124

