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ABSTRACT 

The homogeneous cubic equation with four unknowns represented by the Diophantine    equation  

233 zw21yx   is analyzed for its patterns of non – zero distinct integer solutions. A few interesting 

properties between the solutions and special numbers, namely, Polygonal number, Pyramidal number, 

Centered polygonal number, Stella octangular number and Octahedral number    are presented.  

Keywords: Homogeneous cubic, Cubic equation with four unknowns, Integral solutions, Cubic Diophantine equation, 

Third degree equation, Special numbers. 

 

Notations Used 

 Polygonal number of rank n with size m . 
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 Pyramidal number of rank n with size m . 
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 Centered polygonal number of rank n with size m . 
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 Stella octangular number of rank n  

 )1n2(nSO 2
n    

 Octahedral number of rank n 

Review of Information Engineering and Applications 
2014 Vol. 1, No. 2, 93-101. 
ISSN(e): 2409-6539 
ISSN(p): 2412-3676 
DOI: 10.18488/journal.79/2014.1.2/79.2.93.101 
© 2014 Conscientia Beam. All Rights Reserved. 

 

http://crossmark.crossref.org/dialog/?doi=10.18488/journal.79/2014.1.2/79.2.93.101


Review of Information Engineering and Applications, 2014, 1(2):93-101 
 

 
94 

© 2014 Conscientia Beam. All Rights Reserved. 

 

 )1n2(n
3

1
OH 2

n   

 

Contribution/ Originality 
This study contributes in the existing literature different approaches of determining non-zero 

distinct integer solutions to the homogeneous equation of degree three with 4 unknowns given by  

233 zw21yx   

 

1. INTRODUCTION 

Diophantine equations, homogeneous and non-homogeneous have aroused the interest of 

numerous mathematicians since antiquity can be seen as in [1-3].The Diophantine equations offer 

an unlimited field for research due to their variety. The problem of finding all integer solutions of 

a Diophantine equation with three or more variables and degree at least three, in general presents 

a good deal of difficulties. Cubic equation in three variables falls into the theory but is still an 

important topic of current research [4-6]. Equations with more than three variables and degree 

at least three are known very little.  

In particular, one may refer [7-18] for cubic equations with four unknowns. This research 

concerns with yet another interesting equation 
233 zw21yx    representing the 

homogeneous cubic equation with four unknowns for determining its infinitely many non-zero 

integer points. Also a few interesting properties are presented. 

 

2. SOME INTERESTING PATTERNS 

The homogeneous cubic Diophantine equation with four unknowns to be solved is given by 

233 zw21yx 
        

(1) 

which is written as  
222 zw21)yxyx)(yx( 

   
(2)  

Suppose  yxz         (3)                                 

Substitute (3) into (2), it reduces to the quadratic equation 
222 21)( wyxyx   (4) 

Let  vuy,vux         (5)  

where u and v are non-zero distinct arbitrary integers. 

Substituting (5) in (4), it gives   
222 w21v3u       (6) 

Equation (6) is solved through different approaches and the different patterns of solutions of (1) 

obtained are presented below. 
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2.1 Pattern-1 

Assume  )b3ia)(b3ia(b3aw 22 
      (7) 

Write 21 as  )32i3)(32i3(21 
      (8) 

Using (7) and (8) in (6), it is written as 

22 )b3ia()b3ia)(32i3)(32i3()v3iu)(v3iu( 
                        (9) 

Suppose that following system of equations are derived from (9) 

2)b3ia)(32i3()v3iu( 
 

2)b3ia)(32i3()v3iu( 
 

Equating the real and imaginary parts in either of the above two equations, we get 

  

ab6b6a2v

ab12b9a3u

22

22




     

 Hence, in view of (3) and (5), we have 

   































ab24b18a6)b,a(zz

ab18b3a)b,a(yy

ab6b15a5)b,a(xx

22

22

22

                       (10) 

Thus (7) and (10) represent non-zero distinct integer solutions for (1). 

Properties of pattern-1: It is easy to infer following properties from (10) 

 n
22222 SO84)1n2(n84)1n2,n(z)1n2,n(y6)1n2,n(y5)1n2,n(x   

 n,4
5
n t6p9))1n(n,n(w))1n(n,n(x))1n(n,n(z   

 n
222 OH252)1n2,n(84)1n2,n(y5)1n2,n(x   

 
2

n,4 n16t8)n,n(w)n,n(z)n,n(x 
  ,  a perfect square            

 

 
2n24)n,n(w)n,n(z)n,n(x  , a nasty number. 

Notes of pattern-1: 
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Instead of (8), write 21 as   
4

)35i3()35i3(
21




   

 
Following the procedure presented in pattern-1, the corresponding integer solutions of 

(1) are
  

  

22

22

22

22

b3a)b,a(ww

ab30b9a3)b,a(zz

ab18b3a)b,a(yy

ab12b12a4)b,a(xx









      

2.2 Pattern-2
 

Equation (6) can be written as 1*w21v3u 222                         (11) 

Write 1 as 
4

)3i1)(3i1(
1


                             (12) 

Using (7), (8) and (12) in (11), it is written as 













 












 


2

3i1

2

3i1
)b3ia()b3ia)(32i3)(32i3()v3iu)(v3iu( 22

 

Consider 












 


2

3i1
)b3ia)(32i3()v3iu( 2

 

Equating real and imaginary parts, we have 

 

 

 ab6b15a5
2

1
v

ab30b9a3
2

1
u

22

22





 

Substituting the above value of u and v in (3) and (5), we obtain 

 































ab30b9a3)b,a(zz

ab12b12a4)b,a(yy

ab18b3a)b,a(xx

22

22

22

             (12a) 

Thus (7) and (12a) represent non-zero distinct integer solutions for (1). 

Properties of pattern-2: It is easy to infer following properties from (12a) 

 n,4
2 t20n20)n,n(w)n,n(x   
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 )1n,n(z)1n,n(x3)1n(n84)1n,n(y)1n,n(x4   

 
2n36)n,n(z)n,n(w3   is a perfect square 

 
2

n
22 n6}SO18)1n2,n(w)1n2,n(x{3  , a nasty number 

 
32222 )n42()}n,n(z)n,n(y)n,n(x17{21   , a cubical  integer. 

 

2.3 Pattern-3 

 Instead of (12), write 1 as 
49

)34i1)(34i1(
1


  

Repeating the above process as in pattern-2, the non-zero distinct integral solutions of (1) are 

found to be 

 

22

22

22

22

b3a)b,a(ww

ab24b18a6)b,a(zz

ab6b15a5)b,a(yy

ab18b3a)b,a(xx









  

Properties of pattern-3: It is easy to infer following properties from above equations 

 )84(mod0)1n,n(84)1n,n(y)1n,n(x5 222    

 
2

n,4 n81t165)n,n(y)n,n(x3  , a perfect square 

 )n,n(x)n,n(w  + perfect square = n,4
2 tn   

 n
22 OH252)1n2,n(z)1n2,n(x6   

2.4 Pattern-4 

 One may write (6) as  )vw4(3)w9u( 2222    (13) 

Write (13) in the form of ratio as 

 0b,
b

a

w3u

vw2

)vw2(3

w3u



































 

Which is equivalent to the system of double equations 
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0)a3b2(wvbua

0)a6b3(wva3ub




 

Applying the method of cross-multiplication, we have 

 

ab6b2a6v

ab12b3a9u

22

22




                (14) 

 
22 ba3w                   (15) 

Hence, in view of (3) and (5), the corresponding values of x, y and z are given by 

 































ab24b6a18)b,a(zz

ab18ba3)b,a(yy

ab6b5a15)b,a(xx

22

22

22

            (15a) 

Thus (15) and (15a) represent non-zero distinct integer solutions for (1). 

Properties of pattern-4: It is easy to infer following properties from (15a) 

 )82(mod0)1n2,n(82SO2)1n2,n(x)1n2,n(y5 2
n

22   

 0)1n,n(z)1n,n(y)1n,n(x   

 )5(mod0n5tCP108)13n19,n(w)13n19,n(y n,14n,19
22   

 Each of the following represents a perfect square 

 
2

n,19
22 n36}CP108)13n19,n(w)13n19,n(y{6   

 
2)n42()}n,n(z)n,n(y6{21   

2.5 Pattern-5 

Equation (6) can be written as 
222 uw21v3                           (16) 

Write 
2221 bav                    (17) 

Write 3 as 
4

)321)(321(
3


                 (17a) 

Substituting (17) and (17a) in (16), we get 
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











 












 


2

321

2

321
)ba21()ba21()uw21)(uw21( 22

 

Consider 

 











 


2

321
)ba21()uw21( 2

 

Equating rational and irrational parts, we have 

 ab42b3a63
2

1
u 22   and  ab6ba21

2

1
w 22       (18) 

Replacing a by 2A and b by 2B in (18), and using (3), (5),(17) and (17a), we have 

 

AB12B2A42)B,A(ww

AB168B12A252)B,A(zz

AB84B10A42)B,A(yy

AB24B2A210)B,A(xx

22

22

22

22









  

Properties of pattern-5: 

 n,6
32222 CP96n96)n,n(x)n,n(y5)]n,n(w)n,n(y[6   

 )]1n,n(x)1n,n(y5[)]1n,n(w)1n,n(y[6)1n(n96)1n,n(w6)1n,n(z   

 )80(mod0n80)n,n(w)n,n(y 2   

 
2

A,4 n81t)n,n(w)n,n(y 
,
 a perfect square 

 
2n96)n,n(w6)n,n(z  =, a Nasty number 

 

3. CONCLUSION 

In this paper, we have illustrated different ways of obtaining non-zero distinct integer     

solutions to the homogeneous cubic equation with four unknowns given by 
233 zw21yx   . 

As the Diophantine equations are rich in variety, one may search for the integral solutions of 

other forms of cubic Diophantine equations along with their corresponding properties. 
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