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The traditional frequentist quantile regression makes minimal assumptions that 
accommodate errors that are not normal given that the response variable (y) is 
continuous even in Bayesian framework. However inference on these models where y is 
not continuous proves to be challenging particularly when the response variable is an 
ordinal data. This paper portrays the idea of Bayesian quantile estimation on ordinal 
data. This method utilizes the latent variable inferential framework. Estimation was 
done using Markov chain Monte Carlo simulation with Gibbs sampler where the cut 
points were set ahead of time and remained fixed all through the analysis. The method 
was applied in a mental health study of University undergraduate students. 
Investigations of the model exemplify the practical utility of Bayesian ordinal quantile 
models. In this paper we were able to investigate the mental health state of 
undergraduate students at different points in the distribution of their ages. Our findings 
show that the age of the students has a significant effect on their mental health. The 
results revealed that at 25th, 50th and 75th quantiles the ages had a negative effect on 
their mental health while at the 95th quantile the effect was positive. This study was 
able to show that older undergraduate students are more mentally equipped to 
withstand the stress of higher learning in the University.  
 

Contribution/Originality: The paper's primary contribution is to apply Bayesian ordinal quantile regression to 
mental health analysis. The study utilized the Gibbs sampler with fixed cut-points. It portrayed insight to the effect 
of age on the mental health of undergraduate students at different points on the age distribution. 

 
1. INTRODUCTION 

The traditional frequentist quantile regression as proposed by Koenker (2004) makes minimal assumptions that 
accommodates continuous response variables with errors that are not normal. The Bayesian quantile framework 
also assumes the response variable to be continuous. However inference on these models where the response 
variable is not continuous proves to be challenging particularly for ordinal data. Ordinal models arise when the 
response variable is discrete and inherently ordered or ranked with the characteristic that values assigned to 
outcomes have an ordinal meaning, but no cardinal interpretation. For example, in a survey regarding the 
performance of the economy, responses may be recorded as follows: 1 for ‘bad’, 2 for ‘average’ and 3 for ‘good’. The 
responses in such a case have ordinal meaning but no cardinal interpretation, so one cannot say a value of 2 is twice 
as good as a value of 1, (Rahman, 2016). The ordinal ranking of the responses differentiates these data from 
unordered choice outcomes. Quantile regression allows us to uncover interesting structures that might be present 
in the tails of the distribution, including heavy-tailed or skewed distributions, that would otherwise be masked in 
standard regression and distort inference. Quantile regression allows us to quantify a more complex relationship 
between the covariates and the distribution of the response variable by modeling the conditional quantile function 

of response variable y, that is Qy(  |x), where   is the quantile with interval 0 <   < 1. Here, the  quantile of y 

Quarterly Journal of Econometrics Research 
2020 Vol. 6, No. 1, pp. 12-17. 
ISSN(e): 2411-0523 
ISSN(p): 2518-2536 
DOI: 10.18488/journal.88.2020.61.12.17 
© 2020 Conscientia Beam. All Rights Reserved. 

 
 
 

 
 
 

 

 
 
 

https://orcid.org/0000-0002-9825-3123
https://www.doi.org/10.18488/journal.88.2020.61.12.17
https://www.doi.org/10.18488/journal.88.2020.61.12.17
https://www.doi.org/10.18488/journal.88.2020.61.12.17
https://www.doi.org/10.18488/journal.88.2020.61.12.17
https://www.doi.org/10.18488/journal.88.2020.61.12.17


Quarterly Journal of Econometrics Research, 2020, 6(1): 12-17 

 

 
13 

© 2020 Conscientia Beam. All Rights Reserved. 

given covariates x is defined as inf{y : F(y) ≥  } for the cumulative distribution function F(y). As a result, quantile 
regression estimates both the variable effects of covariates across conditional quantiles and the shape of response 
distributions conditional on x. This is useful in any situation where the mean might not adequately describe the 
conditional response distribution, such as in the presence of non-Gaussian residuals.  The Bayesian approach to 
ordinal quantile regression is of interest in this paper.  
 

2. BAYESIAN QUANTILE REGRESSION 
Given a linear model: 

,         (1) 

where are column vectors of size j and  is a scalar variable while is the residual. To 

obtain the conditional mean regression it is assumed that , in the same vein the conditional median 

regression is obtain under the assumption that med . We can deduce from Equation 1 that the residual 
is given as; 

          (2) 

In mean regression the coefficient  can be obtained by OLS method by minimizing the sum of squared residuals; 

                     (3) 

 In median regression the regression coefficient  is obtained by minimizing the absolute deviations; 

        (4) 
The extension of the median regression to all other quantiles gave rise to quantile regression analysis. The 

quantile regression estimation proceeds by minimizing, with respect to , the following objective function. 

            (5) 
This objective function, Equation 5 can be written as a sum of check functions or piecewise linear functions as 

follows;  

        (6) 

Given that  is the  regression quantile, where the check function 

 is the indicator function which equals 1 if the condition inside the 

parentheses is true and 0 otherwise. This check function assigns  to positive residuals and 1-  to negative 

residuals. Note  is the median regression. Because the check function is not differentiable at the origin, 
computational techniques such as the simplex algorithm, the interior point algorithm or the smoothing algorithm 
are often applied. 

Koenker. and Machado (1999) were the first to show that likelihood-based inference using independently 
distributed asymmetric Laplace densities (ALD) is directly related to the minimization problem in Equation 6. Yu 
and Zhang (2005) proposed a three-parameter ALD with a skewness parameter that can be used directly to model 
the quantile of interest. The Bayesian version of quantile regression still uses the check function and its method 
follows the proposed three-parameter ALD that assumes that the residual follows an Asymmetric Laplace 

distribution (ALD) i.e  where  is the location, is the scale parameter and  is the skewness 
parameter and it also relies on the observation that the asymmetric Laplace distribution (ALD) contains a check 
function within its probability density function (PDF). The Bayesian framework, when adopting an ALD prior on 

the residuals with   = 0 and  = 1, has the probability density function given as; 
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      (7) 

 And the likelihood function of the model  becomes 

       

                       (8)    

The likelihood Function in equation 8 can be seen to contain the objective function for the  regression 
quantile in Equation 6. The mean and variance of the PDF in Equation 7 is given by; 

       (9) 
where E(ei) is the mean and V(ei) is the variance. 

Both the mean and variance, as shown above, depend on the skewness parameter , but are fixed for a 

given value of . Interestingly,  also defines the quantile of an AL distribution. This feature becomes useful in 

quantile regression since estimation of a model at different quantiles basically requires a change in the value of  
 

3. BAYESIAN ORDINAL QUANTILE REGRESSION 
The standard approach to regression with ordinal response variables is to use the ordinal probit model. Fitting 

this ordinal probit model only captures the mean of the conditional distribution of the continuous latent variable 
underlying each response but quantile regression will study the full conditional distributions of such outcomes 
without assuming Gaussianity. The Bayesian method of estimating quantile regression stems from the fact that 
maximization of the likelihood, where the error follows an AL distribution, is equivalent to minimization of the 
quantile objective function in Equation 6. Bayesian implementation of quantile regression begins by forming a 
likelihood based on the AL distribution, thus the posterior distribution is proportional to the product of the 
likelihood and the prior distribution of the parameters and it can be represented as follows; 

      (10) 

Where  is the full posterior distribution,  is the joint prior on the regression 

parameters and  is the product of the likelihoods. Bayesian inference for the estimation of  
at any quantile is done by querying the posterior distribution with the skewness parameter set to that quantile. 
Unfortunately the posterior distributional form cannot be tracked; therefore an appropriate Markov chain Monte 
Carlo (MCMC) method is usually used to perform a Bayesian analysis to estimate the full posterior distribution 

which is then queried to obtain  at any desired quantile. Previous approaches that have been developed for 
Bayesian quantile regression include random walk Metropolis-Hastings method and Gibbs sampler methods which 
are more computationally efficient and require less parameter tuning. Hideo and Genya (2012) showed that Gibbs 
sampling can be used for Bayesian quantile regression provided the AL distribution is represented as a mixture of 
normal–exponential distributions. There is also a partially collapsed Gibbs sampler (Reed & Yu, 2009). In 
particular, there is no widely accepted quantile regression method for ordinal variables. Ordinal variables are 
especially common in medical contexts, where many health outcomes are expressed as ordered categories rather 
than as strictly numerical measures, like the case we are considering in this paper, where the mental health status of 
undergraduate students are assessed based on the ages of the students.  

The Bayesian quantile regression methods thus discussed so far assumes that the response variable y is 
continuous. Since y is assumed continuous in Bayesian Quantile regression and its residuals are modeled directly as 
Asymptotic Laplace Distributed (ALD) variables then this direct approach is very meaningful but the situation 
where y the response variable is not continuous but ordinal, the direct approach becomes meaningless. To handle 
the situation where y is ordinal, Rahim and Haithem (2017) introduced a continuous latent variables zi 
corresponding to each yi, the variable zi is unobserved and relates to the observed response yi, which has J 

categories or outcomes gotten by implementing cut-points . Thus a quantile regression ordinal model can be 
represented using a continuous latent random variable zi as; 

        (11) 

Where the residual   



Quarterly Journal of Econometrics Research, 2020, 6(1): 12-17 

 

 
15 

© 2020 Conscientia Beam. All Rights Reserved. 

Let’s assume y can take on  possible ordered values, which can be coded as y ∈ {, ,  . . . ,  }. Then 
these coded responses relate to z as follows: 

      (12) 
Grabski, Vito, and Engelhardt (2019) this formulation allows us to transform the ordinal response into 

continuous responses so that we can apply the above mentioned method. The Bayesian quantile regression models 

 given observed and continuous y, while the transformed Bayesian model with the unobserved but 

continuous z, models , which is coded as an ordinal response correlated with y as in Equation 12. 

In both cases,  is drawn from an Asymptotic Laplace distribution. The coefficients have Laplace priors, and the 
cutpoint vector’s prior is an order statistics from a uniform distribution. Gibbs sampling can then be used to 
perform inference on this model, leveraging the key observation that the ALD can be written as a conditionally 
conjugate normal-exponential mixture. Thus, the Bayesian regression quantiles for Equation 11 are easily 
estimated. 
 

4. METHODOLOGY 
Our data is an ordinal data on the mental health state of university students. Information gotten from students 

was classified based on their age and answers to questions that point to their mental health wellbeing. Their mental 
health state was ordered into 3 categories; stable, mildly-unstable and unstable. In this paper we consider the 
ordered responses yi (mental health state) and the corresponding covariate xi (age), for i = 1, . . . ,n. Using the latent 
variable inferential framework of Albert and Chib (1993) we employed the Gibbs sampler, leveraging on the 
assumption that the Asymptotic Laplace distribution of the residual is a mixture of normal and exponential 
distribution where the residual is given as; 

       (13) 

Where  is the scale parameter,  and are mutually independent. 

And the constants and  are defined as; 

          (14) 
Given Equation 13, the Bayesian Ordinal quantile model thus incorporates the normal-exponential Al 

distribution into the latent variable model of Equation 11, thus the ordinal quantile model can therefore be 
expressed as; 

        (15) 
However, the scale parameter can be removed from the model through a simple transformation as follows: 

          (16) 

Where , Equation 16, makes it clear that  and this gives 
the access to the properties of the normal distribution in the estimation procedure.  
 

5. RESULTS 
Our data has a sample size of 707 undergraduate students. The number of observations corresponding to each 

category are; 138(19.52%) for stable state, 533 (75.39%) for mildly-stable state and 36 (5.15%) for unstable state. 
Using data on the above variables, the application studied the effect of age on the mental health state of 
undergraduate students. In the analysis we considered the 25th, 50th, 75th and 95th quantiles. The ages of the 
students range from 15-42. Where we classified ages (15-19) years to fall within the 25th quantile, (20-21) years falls 
within the 50th quantile, (22-23) years falls within the 75th quartile and ages >23 falls within the 95th quantile. 

The posterior estimates of the Bayesian quantile ordinal models with the inefficiency values were obtained and 
the results are shown below; 
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Table-1. Posterior mean, posterior standard deviation and inefficiency values. 

 Quantiles Parameters Estimates 

 Intercept Age 

25th quantile Mean -1.4284 -0.7301 

Standard Deviation 0.8282 0.0388 
  Inefficiency 1.1156 1.1667 
50th quantile Mean -1.0017 -0.1995 

Standard Deviation 0.1894 0.0637 
Inefficiency 1.4307 1.2034 

75th quantile Mean -0.2227 -0.0036 
Standard Deviation 0.0347 0.0466 
Inefficiency 1.3620 1.3075 

90th quantile Mean 0.0591 0.3261 

Standard Deviation 0.1662 0.2124 
Inefficiency 1.1567 1.2864 

 

 
The effect of age at the 25th, 50th and 75th quartile has a negative effect on the probability of supporting stable 

mental health. This shows that a significant number of students between the ages of 15 – 23 are not in a stable 
mental health state. At the 90th quantile, we see a positive effect, this shows that significantly students from ages 23 
and above are in a state of stable mental health.  
 

Table-2. Deviance Information Criterion (DIC) for all Quantiles. 

Quantiles Deviance Information Criterion (DIC) 

25th Quantile 1004.16 
50th Quantile 839.93 
75th Quantile 789.25 
90th Quantile 987.53 

 

 
The model selection criterion such as deviance information criterion (DIC) (Celeux, Forbes, Robert, & 

Titterington, 2006; Spiegelhalter, Best, Carlin, & van der Linde, 2002) was utilized to choose a value of  that is 
most consistent with the data. To show this, DIC was computed for the 25th, 50th, 75th and 90th quantile models and 
the values were 1004.16, 839.93, 789.25 and 987.53, respectively as shown in Table 2. Hence, amongst all the 
models considered, the 75th quantile model provides the best fit. 
 

6. CONCLUSION 
The paper considers the Bayesian analysis of quantile regression models for univariate ordinal data. The 

method exploits the latent variable inferential framework of Albert and Chib (1993) and capitalizes on the normal–
exponential mixture representation of the AL distribution. Estimation utilizes Gibbs sampling with fixed cut-

points. Posterior means, standard deviations and inefficiency factors are calculated for . The Posterior 

estimates of  are statistically significant at all quantiles, the standard deviations are small and inefficiency factors 
are all less than 6 at all quantiles. The explanation is that the age of university undergraduate students has an effect 

on their mental health state. Considering the signs on the  estimates, the 25th, 50th and 75th quantile effects were 
all negative while the 90th quantile effect was positive. This shows that ages of students between 15 and 23 showed 
a negative effect on the mental health state while the ages of students above 23 had a positive effect on the mental 
health state. Based on the findings we can say that the older an undergraduate student is, the better mentally 
equipped he/she is in coping with the stress associated with higher learning in the university. The model 
comparison based on DIC selects the 75th quantile model to be the best fitting model.  
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