Animal Review 2016 Vol. 3, No. 2, pp. 43-51 ISSN(e): 2409-6490 ISSN(p): 2412-3382 DOI: 10.18488/journal.ar/2016.3.2/101.2.43.51 © 2016 Conscientia Beam. All Rights Reserved.

EFFECT OF A PLANT EXTRACT IN SEVERAL TRAITS OF PLYMOUTH ROCK BARRED HENS AND PULLETS CHALLENGED WITH *SALMONELLA TYPHIMURIUM* IN A RURAL VILLAGE IN CENTRAL MEXICO

J.C. García-López¹⁺⁺ --- G. Álvarez-Fuentes² --- J.M. Pinos-Rodríguez³ --- Y. Jasso-Pineda⁴ --- E. Zapata-Pérez⁵ --- H.A. Lee-Rangel⁶ --- S. López-Aguire⁷ --- M.A. Camacho-Escobar⁸

1247 Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, México

^sCentro de Biociencias, Universidad Autónoma de San Luis Potosí, México

⁶Centro de Estudios Tecnológicos Industrial y de Servicios 106, Ciudad Fernández, México

^eFacultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, México

^sInstituto de Industrias, Universidad del Mar Campus Puerto Escondido. Puerto Escondido Oaxaca, México

ABSTRACT

The effect of Chrysactinia mexicana Gray extract on poultry challenged with Salmonella typhimurium, was evaluated: 1) The aim of the survey was to understand the status quo of backyard poultry production in a rural area, 2). A field study with forty Plymouth Rock Barred Laying hens were used to test the effects of C. mexicana, and 3) 160 day old Plymouth Rock Barred pullets, were assigned to: T1 control; T2 control + S. typhimurium challenge; T3 control + S. typhimurium + C. mexicana; and T4 control + S. typhimurium + antibiotic. Crop, gizzard, proventriculus and duodenum colony forming units (CFU) were measured, and leukocyte and erythrocyte counts. In addition, weight gain and feed intake was measured. The liver, bursa, thymus and spleen were weighed. Results show that 75% of farmers in the community have hens. The main diseases in their fowl: respiratory 45%; diarrhea 35% and parasites 20%. 90% of farmers have no access to veterinary services. Results from the field study show differences (P<0.05) between the treated group with C. mexicana and the control group with no treatment. Feed intake, total weight gain and final body weight was higher (P<0.05) for control group among the other treatments. Treatment challenged plus antibiotic showed lower CFU counts than treatment with S. typhimurium and C. mexicana. Thymus, bursa and spleen weights were similar (P>0.05) for the C. mexicana and antibiotic treatments. Leukocyte and erythrocyte counts were lower (P<0.05) in control group. C. mexicana extract could be a tool to diminish bacteria in hens.

Keywords: Chrysactinia mexicana, Salmomella typhimurium, Poultry, Backyard system.

Received: 17 June 2016/ Revised: 27 August 2016/ Accepted: 14 October 2016/ Published: 3 November 2016

Contribution/ Originality

This study is one of very few studies which have investigated the use of *Chrysactinia mexicana* extract on poultry performance challenged with *Salmonella typhimurium*

1. INTRODUCTION

Village poultry can be found in all developing countries and play a vital role in many poor households providing scarce animal protein in the form of meat and eggs [1]. It has been estimated that 80 per cent of the global poultry population occurs in traditional family-based production systems [2]. Livestock, especially poultry species, have been shown to provide a practical and effective first step in alleviating rural poverty as a ready source

of quality nutrients in the human diet [3]. In Mexico more than 85% of the farmers practice it. Animal diets basically consist of kitchen-leftovers, worms and when available, some maize grain. Labor is provided by the household and the poultry represents an important source of protein from meat and eggs, especially for children [4, 57. The backyard poultry production system is highly affected by several diseases; among them are the gastrointestinal bacteria like Salmonella typhimurium that leads to high morbidity and mortality [6]. Some researchers [7] in a study of rural poultry production in Tetiz, Yucatan ,Mexico found that 97.3% of the families with poultry had chickens and showed high mortality and low production traits. It has been shown that the incorporation of herbs and their associated essential oils into their diet may provide beneficial effects on poultry performance and health due to the antimicrobial activity of their phytochemical components [8]. Reports from around the world include exhaustive lists of plants that have been reported to have medicinal properties [9, 10]. Chrysactinia mexicana Gray, commonly known as false Damiane is a small shrub distributed throughout the southwest United States and central and northern Mexico [11]. The major chemical components of C. mexicana are: eucalyptol (41.3%), piperitone (37.7%) and linalyl acetate (9.1%) [12-15]. A group of researchers [16] studied the in vitro antimicrobial effects of C. mexicana, which have demonstrated some bactericidal activity. Other group [17] evaluated the effect of C. mexicana in maize weevil (Sitophilus zeamais Motsch) and found that the leaf powder totally prevented F1 progeny from emerging. In another experiment $\lceil 18 \rceil$ it was demonstrated that C. mexicana aqueous extract induced an antidepressant effect in mice. In another laboratory two experiments were conducted and found that Chrysactinia mexicana showed antiprotozoal acitivity against Entamoeba histolytica and Giardia lamblia, also had an effect on Trichomonas vaginalis trophozoites [19, 20]. Moreover, other researchers [21] found that C. mexicana showed the greatest antimicrobial activity against the drug resistant strain of Mycobacterium tuberculosis. An experiment was performed 22 to test the effect of C. mexicana ethanolic extract on 21 week old laying hens challenged with Salmonella typhimurium, and showed the C. mexicana extract as having a bactericide effect. No research has been done elsewhere with C. mexicana extract and its effects on poultry. Because of the high cost of antibiotics and the low income of these types of backyard poultry producers, it makes the treatment of their poultry a real problem. The objective of the present study was to perform a survey about the status quo of backyard poultry production of a rural community; perform a field study with Plymouth Rock Barred hens to test the effect of C. mexicana through a spot agglutination test for Salmonella typhimurium; and assess the effect of C. mexicana Gray in a controlled experimental trial with Plymouth Rock Barred pullets challenged with S. typhimurium.

2. MATERIALS AND METHODS

2.1. Survey

The study was performed in the community of San Diego municipality of Rioverde S.L.P. Central Mexico. Located 21° 54′ N and 100° 10′ W, and 980 m above sea level. Climatic conditions include annual average temperature of 21 ° C and rainfall of 479.5 mm [23]. There were 326 families in the community. A survey using a random sample of 50 families, representing 15.3% of total population, was conducted to investigate back-yard poultry production issues. A questionnaire was designed to obtain information including; production, nutrition, health and reproductive aspects, facilities and equipment for poultry production, as well as meat and egg consumption.

2.2. Plant Extract

Plant collection was made from Guadalcazar village, located in a semi-desert area in the center zone of México. Leaves were separated from the plants, placed on plates and dried for three weeks at room temperature. The leaves were then ground and the extract was obtained by common extract methods, such as heat extraction, gravity column or percolation technique with ethanol [24, 25]. Two hundred g of leaf ground powder samples were placed in a column by gravity or percolation and the solvent was added and sat for 48 h, using about 5 L of ethanol solvent. The samples were then dried in an extraction chamber. The obtained extract was then concentrated at reduced pressure to 29 °C with a rotavapor (R-210/R-215 Buchi) [26, 27]. Finally, the extract was dried by freezedrying process (cryodesicattion).

2.3. Field Study

The field study was performed in the same village as mentioned above. In order to describe the effect of *C. mexicana* extract under no controlled conditions, one poultry farmer was selected. 40 Plymouth Rock Barred hens were chosen, at day one of the trial and a rapid whole blood agglutination test for *Salmonella typhimurium* was applied to all of the hens. Then two groups of 20 hens each were created. Group 1 (G1) control group was managed as usual; group 2 (G2) same management as G1 but hens in this group received *C. mexicana* extract in the water for 15 days. After the end of the study the agglutination test for *Salmonella typhimurium* was performed again. Briefly, a clean white tile marked into squares of 3 x 3 cm was used. One drop (about 0.02 ml) of crystal-violet-stained antigen was placed in the center of each square. One sample of fresh whole blood was obtained from the wing vein of each hen using a needle with triangular point. An equal size drop of fresh whole blood was placed to a drop of antigen and mixed using a fine glass rod, the drops kept agitated for up 2 minutes. A positive reaction in indicated by easily visible clumping of the antigen within 2 minutes [28].

2.4. Experimental Study

A complete randomized design was used. 160 one day old Plymouth Rock Barred laying pullets were allocated to individual cages, 40 pullets per treatment: T1: control, T2: control + *S. typhimurium* challenge, T3: control + *S. typhimurium* + *C. mexicana* extract and T4: control + *S. typhimurium* + antibiotic. The *C. mexicana* extract was administered orally via an esophageal cannula during 15 days with a dose of 0.5 ml of the extract according to previous research in our laboratory [22]. To test the plant extract a standard suspension of *S. typhimurium* (ATCC 14028) was prepared to meet the 0.5 Mc Farland standard equivalents to 10^8 CFU/ml concentration [29].

S. typhimurium challenge was given in an identical manner at days two and six of the experiment [30]. The antibiotic used was enrofloxacin 5 mg (Baytril 0.05 %, Bayer, Mexico) the dose was 1 mL/1L water every 24 hours. Feed and water was offered *ad libitum* and, pullets were not vaccinated. Feed was formulated to meet or exceed the NRC [31] requirements for laying pullets (Table 1). Measured variables were initial body weight, weight gain, final weight, feed intake and quantification of colony forming units per ml (CFU/ml) in gizzard, duodenum, proventriculus, and crop of hens which were slaughtered 15 days after S. typhimurium challenge. In addition, Leukocyte and erythrocyte counts were determined by Natt and Herrick's Stain method [32]. Briefly, a standard red blood cell diluting pipette was used to dilute whole anticoagulated blood with the Natt & Herrick's solution at the rate of 1:200 the diluted blood was allowed to mix for two minutes before it was discharged into the hemacytometer counting chamber. Then using the high dry (40X) objective of the microscope, the total number of red and white cells were counted. Also, the liver, bursa, thymus, and spleen were removed and weighed. For the Colony Forming Units (CFU), from the different organs and using sterile scissors a small (approximately 1 cm) hole was cut, two milliliters of sterile PBS were pipetted into each organ. Only 2 to 4 mL of liquid was recovered. One milliliter was used for a culture. The colony counting procedure used was the membrane filter technique [33].

2.5. Data Analysis

Analysis of the survey was analyzed using PROC UNIVARIATE and PROC FREQ procedures of statistical analysis system (SAS) software [34]. The field study data were analyzed by logistic regression (LOG REG) analysis of SAS software [34]. For the experimental study, a complete randomized design was used to assess the extract activity. Analysis of variance was performed with PROC GLM of SAS, and Tukey means with SAS Institute [34] software program. Bacterial numbers were converted to log CFU for statistical analysis.

T 11	
Ingredient	g/kg diet
Yellow corn 8%	566.33
Soybean meal 46%	357.08
Calcium	15.80
Vegetable oil	28.35
Phosphate	17.94
Sodium chloride	4.00
Vitamin mix ²	2.50
Mineral mix ²	2.50
DL-Methionine	2.38
Threonine	0.30
L-Lysine	1.75
Choline	1.07
Chemical composition	
Metabolisable energy, Kcal/kg	2975
Crude protein, %	21.73
Fat ,%	5.30
Fibre, %	2.91
Ash, %	6.62
Methionine, %	0.64
Lysine, %	1.33
Calcium, %	1.00
Phosphorus,%	0.75
Threonine, %	0.86

¹Diet was offered ad libitum for the duration of the trial, and was formulated to meet or exceed all requirements for growing pullets [31].

²Vitamin mix provided (per kg final diet): thiamin, 1.8 mg; riboflavin, 3.6 mg; pantothenic acid, 11.5 mg; niacin, 35 mg; pyridoxine, 3.5 g; folic acid, 0.6 mg; biotin, 0.2 mg; vitamin B-12, 10 μg; retinyl palmitate, 0.9 mg; cholecalciferol, 50 μg, all-*rac*-α-tocopheryl acetate, 36.8 mg; menaquinone, 5 mg. Mineral mix provided (per kg final diet) selenium, 0.2 mg; copper, 8.1 mg; zinc, 40.7 mg; manganese, 62 mg; iron, 105.4 mg; iodine, 0.35 mg.

3. RESULTS

3.1. Survey

Results from survey show that average family size is 5 ± 2 people with an average age of 25 ± 15 years old. The level of education was 3^{rd} year of elementary school. Results also showed 70% of the people in the village own their houses and that 75% of farmers have poultry. All farmers have a backyard where they have different species of animal, such as rabbits, pigs, hens, chickens, turkey, sheep, cows and horses. Of these species, poultry represents 33% of the total animals. The diseases present in their fowl were: respiratory 45%; diarrhea 35% and parasites 20%. In addition mortality was due to: respiratory 35%, diarrhea 55% and predators (human, dogs and fox) 10%. Poultry breeds were divided among Creole 50%, Rhode Island Red 30% and Plymouth Rock Barred 20%. Table 2 shows the results of a portion of the questionnaire. It is divided into three columns based on the farmer's income; very low income, low income and regular income. It can be seen that most of the items have lower values for the very-low income farmers; low egg and meat consumption as well as small flock size. The same is true for feed source, poultry housing and knowledge about diseases. Moreover, the very-low income farmer does not typically access to veterinary services.

3.2. Field Study

The results from the field study show differences (P<0.05) between the treated group with C. mexicana and the control group with no treatment. From the 20 hens positive to S. *typhimuriun* at the beginning of the study, only two were positive to S. *typhimuriun* at the end of the study, with a morbidity of 10% and 0% mortality (Table 3). The 20 hens in the untreated group remained positive to S. *typhimuriun*, with 100% morbidity and 10% mortality at the end of the study.

Item	Very-low income	Low income	Regular income		
Egg Consumption	1 egg per week 80%	1-3 egg /week 15%	5 eggs /week 5%		
Meat Consumption	1 time a week 80%	2 times / weeks 17%	3 time/week 3%		
Flock Size	1-5 Hens 50%	6-10 hens 30%	11-20 hens 20%		
Access to Veterinary Services and Pharmaceuticals	Never 90%	Sometimes 3%	Yes (frequently use private service providers) 7%		
Feed Source	kitchen-leftovers, insects, worms 45%	Crop By-products, Corn grain 45%	Balanced commercial ration 10%		
Poultry Housing	None 85%	Sometimes, usually from used local materials 12%	Cages 3%		
Training	None	Moderate: control of ND, Gumboro, fowl cholera; breed selection, supplememnatary	Considerable: wide ranging control; breed selection, used of		
	96%	feeding, appropriate housing 3%	balanced ration, good housing 1%		

	Table-2. Backyard I	Poultry production	situation of San	Diego Villa	age, Rioverde, SLP.
--	---------------------	--------------------	------------------	-------------	---------------------

Results from survey from 50 families of San Diego Village community, Rioverde, SLP

Table-3. Spot Agglutination test for Salmonella typhimurium, mortality and morbidity of hens

Item	C. Mexicana	Control	
Day 0	20 hens positive/Salmonella	20 hens positive/Salmonella	
Day 15	2 hens positive/Salmonella ^b	20 hens positive/Salmonellaª	
Morbidity %	10	100	
Mortality %	0	10	

^{ab}Means within columns with different letter are significantly different (P<0.05)

3.3. Experimental Trial

Feed intake, total weight gain, final body weight and feed conversion rate was higher (P<0.05) for control group (T1) among the other treatments (Table 4). Treatment 2 with *S. typhimurium* challenge had the lowest trait performance. Treatment with challenge and *C. mexicana* extract (T3) and treatment with challenge and antibiotic (T4) had similar (P>0.05) feed intake, total weight gain, final body weight and feed conversion rate response. The control group had lower (P<0.05) CFU for crop, gizzard, proventriculus and duodenum compared with the other treatments (Table 4). The highest (P<0.05) content of CFU for all four organs was for the T2. The treatment challenged with *S. typhimurium* and *C. mexicana* extract had lower (P<0.05) CFU for the organs than T2. Treatment challenged with antibiotic showed lower CFU counts than treatment challenged with *S. typhimurium* and *C. mexicana* extract. Thymus, bursa and spleen weights were lower (P<0.05) for control T3 and T4. Treatment 2 had the highest (P<0.05) weight values among the rest of treatments. Leukocyte and erythrocyte counts were lower (P<0.05) in control group compared with the other treatments, the highest values (P<0.05) were for the treatment challenged with *S. typhimurium*. Treatment with challenge plus *C. mexicana* and treatment with challenge plus antibiotic had similar (P>0.05) weights.

Table-4. Means of Plymouth Rock Barred pullets performance, organ weights, blood cells and colony forming units [log CFU/ml] on crop,

Treatment	T1	T2	T3	T4	SEM
Performance					
Initial body weight [ɡ]	33.05	32.47	33.18	32.57	0.918
Final body weight [ʃg]	203.75^{a}	181.92 ^c	200.05ª	206.62^{a}	2.015
Total weight gain [g]	170.07 ^a	149.45^{b}	166.87 ^a	174.05 ^a	4.021
Average daily gain [g]	8.12 ^a	7.1^{b}	7.9 ^a	8.2ª	0.112
Feed intake [g]	315.28^{b}	395.18ª	351.24^{c}	348.12°	7.172
Feed Conversion Rate	1.85a	2.60c	2.10b	2.00b	0.024
Colony Forming Units [log					
CFU/ml]					
Crop	$5.20^{\rm d}$	5.44^{a}	$5.33^{ m b}$	5.30^{c}	0.013
Gizzard	1.90 ^d	2.90^{a}	2.70^{b}	2.50°	0.024
Proventriculus	$3.58^{\rm d}$	4.23 ^a	3.91 ^b	3.81 ^c	0.018
Duodenum	$3.77^{ m d}$	4.44 ^a	4.06 ^b	3.84 ^c	0.039
Organ weights					
Thymus [g]	0.435 ^c	1.178 ^a	0.822^{b}	0.805^{b}	0.036
Bursa [ˈg]	0.689 ^c	0.960 ^a	0.789^{b}	0.720^{b}	0.055
Spleen [g]	0.268 ^c	0.359ª	0.300 ^b	0.299 ^b	0.012
Blood Cells					
Leukocyte/ mm3	5.01 ^c	5.46 ^a	$5.33^{\rm b}$	5.25^{b}	0.010
Erythrocytes/mm3	5.84 ^c	6.34 ^a	6.27^{b}	6.19 ^b	0.021

gizzard, duodenum and proventriculus with different treatments

a,b,c,d Means within columns with different letter are significantly different (P<0.05). T1=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control + challenge with S. typhimurium; T3=Control basal diet; T2=Control basal diet; T3=Control basal diet; T3

+ S. typhimurium + C. mexicana extract; T4= control + S. typhimurium + antibiotic.

4. DISCUSSION

The survey shows that 75% of farmers in the community have hens in their backyard. This is consistent with a group of researchers [35] who carried out a study in a rural community of Veracruz, Mexico which found that 63 % of farmers have hens in their backyard. The results in the present study demonstrate that hens are very important in rural communities. The survey results illustrate that feeding and nutrition of the birds is still a problematic issue, with a high incidence of disease increasing the problem. Another study performed by other group [4] in the state of Puebla, Mexico showed that several respiratory diseases and attacks by predators were mentioned as the main causes of mortality, and the lack of quality feed ingredients and practically no veterinary advice were identified as the most important constraints of household poultry production. Moreover, It is clear that the field study performed in the rural community of San Diego Village demonstrated the problems of hens with the diseases mentioned above. With these results it's very likely that the morbidity caused by S. typhimurium affects most of the fowl in the rural community, and the use of C. mexicana in these cases was very helpful in decreasing the presence of S. typhimurium. For the experimental trial the effect of C. mexicana in pullets performance was evident; the total weight gain for the treatment challenged plus C. mexicana and the group challenged with antibiotic were similar. This was probably due to the effects of the flavonoids of plant extract working to cope with the effects of the infection $\lceil 22, 36 \rceil$. As mentioned by other authors $\lceil 37 \rceil$ who reported C. mexicana to have antimycobacterial activity, it also has anti-diarrheic activity [38]. Eeucalyptol and 26 other diterpenes have been reported to decrease cytokines IL-2 (Th1) and IL-10 (Th2) that are anti-inflammatory inhibiting the response of T cells [39]. Finally, it has been reported that the essential oil from Cymbopogon proximus contains piperitone as the largest compound (73.8%). This compound antagonizes the actions of serotonin and histamine, by the interaction of its receptors [40]. According to the results of this experiment, the use of C. mexicana extract could be a good alternative, especially for low-income families in rural areas that cannot afford to purchase antibiotics for their hens.

5. CONCLUSION

Backyard poultry production in rural communities in Mexico remains a very important activity, and production is limited by several factors; nutrition, and diseases among others. The *Chrysactinia mexicana* extract showed good performance traits and could be a tool to increase poultry production in rural areas.

Funding: This work was supported by the research support fund of the PROMEP/103.5/07/2783 and the UASLP grant CO7-FAI 04.22.24.

Competing Interests: The authors declare that they have no competing interests.

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

REFERENCES

- R. G. Alders and R. A. E. Pym, "Village poultry: Still important to millions, eight thousand years after domestication," World's Poultry Science Journal, vol. 56, pp. 181-190, 2009.
- [2] FAO, "Poultry development review. Food and agriculture organization." Retrieved from http://www.fao.org/docrep/019/i3531e/i3531e.pdf 2013.
- [3] S. Mack, D. Hoffmann, and J. Otte, "The contribution of poultry to rural development," *World's Poultry Science Journal*, vol. 61, pp. 7-14, 2005.
- [4] B. S. B. Centeno, D. C. A. López, and M. A. Juárez, "Household poultry production in Ixtacamaxtitlán Puebla: A case of study," *Técnica Pecuaria En México*, vol. 45, pp. 41-60, 2007.
- [5] C. J. C. Segura, S. M. P. Jerez, F. L. Sarmiento, and R. R. Santos, "Egg production traits of creole hens in the tropics of Mexico," Arch. Zootec., vol. 56, pp. 309-317, 2007.
- [6] J. C. L. García, M. E. O. Suárez, J. M. R. Pinos, and G. F. Álvarez, "Egg components, lipid fraction and fatty acid composition of creole and plymouth rock x rhode Island red crossed hens fed with three diets," *World's Poultry Science Journal*, vol. 63, pp. 473-479, 2007.
- [7] T. M. A. Gutierrez, C. J. C. Segura, B. L. Lopez, F. J. Santos, R. R. Santos, F. L. Sarmiento, H. M. Carvajal, and C. G. Molina, "Characteristics of backyard poultry husbandry in Tetiz, Yucatan, Mexico," *Tropical and Subtropical Agroecosystems*, vol. 7, pp. 217-224, 2007.
- [8] K. W. Lee, H. Everts, H. J. Kappert, M. Frehner, R. Losa, and A. C. Beynen, "Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens," *British Poultry Science*, vol. 44, pp. 450-457, 2003.
- [9] J. B. Githiori, S. Athanasiadou, and S. M. Thamsborg, "Use of plants in novel approaches for control of gastrointestinal helminthes in livestock with emphasis on small ruminants," *Veterinary Parasitology*, vol. 139, pp. 308-320, 2006.
- [10] H. K. Y. Garcia, H. Vibrans, G. M. Rivas, and C. A. Aguilar, "This plant treats that illness? The hot-cold system and therapeutic procedures mediate medicinal plant use in San Miguel Tulancingo, Oaxaca, Mexico," Journal of Ethnopharmacology, vol. 163, pp. 12-30, 2015.
- [11] J. Rzedowski and C. G. Rzedowski, Flora fanerogámica del valle de México, 2nd ed. Pátzcuaro, Michoacán, México: Instituto de Ecología A.C. Y Comisión Nacional Para el Conocimiento Y Uso De la Biodiversidad, 2001.
- [12] G. Delgado and M. Y. Rios, "Monoterpens from Chrysactinia Mexicana," Phytochemistry, vol. 30, pp. 3129-3131, 1991.
- [13] O. N. C. Cárdenas, S. M. A. Zavala, R. J. R. Aguirre, G. C. Pérez, and G. S. Pérez, "Chemical composition and antifungal activity of essential oil of Chrysactinia Mexicana Gray," *Journal of Agricultural and Food Chemistry*, vol. 53, pp. 4347-4349, 2005.
- [14] D. Gang, "Springer. 50 years of phytochemistry research," *Einbardart Buch*, vol. 43, p. 159, 2013.
- [15] M. Picard, G. Lytra, S. Tempere, J. C. Barbe, G. Revel, and S. Marchand, "Identification of piperitone as an aroma compound contributing to the positive mint nuances perceived in aged red bordeaux wines," *Journal of Agricultural and Food Chemistry*, vol. 1, pp. 01-20, 2016.

- [16] A. D. Alanis, J. Calzada, A. Cervantes, J. Torres, and G. M. Ceballos, "Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders," *Journal of Ethnopharmacology*, vol. 100, pp. 153-157, 2005.
- [17] B. I. F. Juárez, P. Y. Jasso, J. R. R. Aguirre, and P. I. Jasso, "Effect of astereacea powder on maize weevil, sitophilus zeamais Motsch," *Polibotánica*, vol. 30, pp. 123-125, 2010.
- [18] J. Cassani, C. O. A. Ferreyra, B. A. M. Dorantes, V. R. M. Vigueras, B. D. Arrieta, and R. R. Estrada, "Antidepressantlike and toxilogical effects of standardized aqueous extract of Chrysactinia Mexicana A. Gray (Asteraceae) in mice," *Journal of Ethnopharmacology*, vol. 171, pp. 295-306, 2015.
- [19] F. Calzada, M. L. Yepez, and A. Aguilar, "In vitro susceptibility of entamoeba histolytica and giardia lamblia," *Journal of Ethnopharmacology*, vol. 108, pp. 367-370, 2006.
- [20] F. Calzada, M. L. Yepez, and C. A. Tapia, "Effect of Mexican medicinal plant used to treat trichomoniasis on trichomonas vaginalis trophozoites," *Journal of Ethnopharmacology*, vol. 113, pp. 248-251, 2007.
- [21] S. G. M. Molina, L. A. Perez, M. P. Becerril, A. R. Salazar, F. S. Said, and T. N. Waksman, "Evaluation of the flora of Northern Mexico for in vitro antimicrobial and antituberculosis activity," *Journal of Ethnopharmacology*, vol. 109, pp. 435-441, 2007.
- [22] J. C. L. García, J. M. R. Pinos, G. F. Álvarez, B. I. F. Juárez, Y. P. Jasso, M. A. E. Camacho, S. A. López, and L. O. A. Hernández, "Effect of Chrysactinia mexicana Gray extract on laying hens organs challenged with Salmonella typhimurium," *Journal of Applied Life Sciences International*, vol. 5, pp. 1-8, 2016.
- [23] M. E. Garcia, *Koppen climate classification modifications*, 3rd ed.: Geographic Institute. National Autonomous University of Mexico, 1981.
- [24] J. B. Harbone, *Phytochemical methods: A guide to modern technique of plant analysis*, 2nd ed. London, New York: Chapman and Hall, 1984.
- [25] E. H. Lennette, Manual of clinical microbiology, 3rd ed. Washington D.C: ASM Press. American Society for Microbiology, 1985.
- [26] NCCLS/CLS, NCCLS/CLSI National committee for clinical laboratory standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9th ed. vol. 32, 2012.
- [27] M. F. Sidney, J. M. William, and G. S. Elvyn, *Bailey and Scott's diagnostic microbiology*, 5th ed.: Elsevier, ASIN BOO149CCB6, 1978.
- [28] C. Wray and A. Wray, Salmonella in domestic animals. Wallingford, Oxon, UK: CAB International, 2000.
- [29] M. Koller, P. Hesse, A. Salerno, A. Reiterer, and G. Braunegg, "A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey," *Biomass and Bioenergy*, vol. 35, pp. 748-753, 2011.
- [30] E. E. Koneman, D. S. Allen, V. R. Dowell, W. M. Janda, H. M. Sommers, and W. C. Winn, *Diagnostic microbiology*, *Editor Lippincott Williams and Walkins*, 5th ed., 1998.
- [31] NRC, Nutrient requirements of poultry, 8th ed. Washington, D.C. National Academy Press, 1994.
- [32] T. W. Campbell, Avian hematology and citology, 2nd ed.: Iowa State University Press, 1995.
- [33] J. M. Pelczar and D. R. Reid, *Microbiology*. New York, Toronto, London: McGraw-Hill, Book Company, Inc, 1958.
- [34] SAS Institute, *SAS user's guide: Statistics*. Cary, NC: SAS Institute Inc, 1991.
- [35] R. E. Aquino, L. A. Arroyo, H. G. Torres, D. D. Riestra, L. F. Gallardo, and Y. B. A. López, "The criollo turkey (Meleagris Gallopavo) and the backyard livestock production in the central part of the state of Veracruz," *Técnica Pecuaria En México*, vol. 41, pp. 165-173, 2003.
- [36] J. B. Harbone, J. Greenham, J. Eagles, and E. Wollenweber, "6-hidroxiflavonol glycosides from Chrysactinia Mexicana," *Phytochemistry*, vol. 30, pp. 1044-1045, 1991.
- [37] C. L. Cantrell, N. H. Fischer, L. Urbastsch, M. S. McGuire, and S. G. Franzblau, "Antimycobacterial crude plant extracts from South, Central and North America," *Phytomedicine*, vol. 5, pp. 137-145, 1998.

- Y. Yvon, E. Raoelison, R. Razafindrazaka, A. Randriantsoa, M. Romdhane, N. Chabir, M. Mkaddem, and J. Bouajila, "Relation between chemical composition or antioxidant activity and antihypertensive activity for six essential oils," *Journal of Food Science*, vol. 77, pp. H184 – H191, 2012.
- [39] C. Ku and J. Lin, "Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes," *Food Chemistry*, vol. 141, pp. 1104 1113, 2013.
- [40] A. Al-Taweel, G. Fawzy, S. Perveen, and E. K. Tahir, "Gas chromatographic mass analysis and further pharmacological actions of cymbopogon proximus essential oil," *Drug Research*, vol. 63, pp. 484 488, 2013.

Views and opinions expressed in this article are the views and opinions of the author(s), Animal Review shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.